12. Фильтрующие свойства последовательного колебательного контура
Последовательный контур изображенный на рис. 4 – пример линейного четырехполюсника, который можно использовать в качестве фильтра.
Рис. 4
Входными зажимами фильтра являются зажимы АА', выходными – ВВ'. Коэффициент передачи такого фильтра:
где R – активное сопротивление контура (сопротивление источника ЭДС не учитывается).
Представим числитель и знаменатель в показательной форме:
откуда модуль и аргумент коэффициента передачи соответственно имеют вид:
Выражение – это амплитудно-частотная, а (30) – фазочастотная характеристика фильтра.
Полосу пропускания фильтра определяют из условия, что на границе полосы модуль коэффициента передачи фильтров уменьшается в
где ξ – расстройка, соответствующая граничным частотам фильтра.
Из (31) получим выражение для относительной ξ>ппроп и абсолютной Δf>проп полосы пропускания фильтра:
При рассмотрении фильтрующих свойств последовательного контура мы пренебрегли внутренним сопротивлением источника ЭДС. В реальной ситуации любой источник сигнала характеризуется некоторой ЭДС и внутренним сопротивлением R. Если источник включается в последовательный контур, полное активное сопротивление контура становится равным R + R>г с учетом R>г, добротность последовательного контура
где
Из-за больших потерь энергии, возникающих на внутреннем сопротивлении генератора, значительно уменьшается добротность контура, и расширяется полоса пропускания фильтра.
13. Фильтрующие свойства параллельного колебательного контура
Рассмотрим фильтрацию радиосигнала в схеме с параллельным контуром (рис. 5). Импенданс этого контура Z>К. Коэффициент передачи четырехполюсника, имеющего входные зажимы АА', выходные ВВ':
где ξ>m, U>m – комплексные амплитуды ЭДС и напряжения на контуре соответственно.
Рис. 5
Для нахождения K надо предварительно найти импенданс параллельного контура:
где
Подставив Z>L и Z>C в (35), получим:
В наиболее интересном с практической точки зрения случае, когда частота «близка» к резонансной частоте
контура, выражение (36) можно упростить.
Знаменатель (36) равен импендансу Z последовательного контура, который имеет вид:
Полоса пропускания:
Эта полоса тем ближе к собственной полосе контура
чем меньше отношение
При R → 0 полоса пропускания неограниченно возрастает, а контур полностью утрачивает избирательные свойства. При использовании контура – фильтра в радиоустройствах необходимо учитывать влияние на его избирательные свойства не только внутреннего сопротивления источника сигнала, но также сопротивления цепей, являющихся нагрузкой фильтра.
14. Система связанных контуров как полосовой фильтр
Идеальный фильтр должен иметь П-образную частотную характеристику и линейную фазовую характеристику в полосе пропускания. Для решения многих радиотехнических задач необходимы фильтры, частотные характеристики которых в большей степени, чем у одиночного контура, приближаются к идеальным.
В радиодиапазоне при создании таких фильтров используется система нескольких контуров, связанных между собой либо общим магнитным полем (индуктивная связь), либо общим электрическим полем (емкостная связь).
Рис. 6
Рассмотрим случай двух контуров с индуктивной связью (рис. 6). Коэффициент передачи такой схемы:
где ξ