Мощность, поглощаемая единицей объема среды электропроводностью s, определяется законом Джоуля – Ленца:

P = σЕ>2, (12)

где Е – эффективное значение напряженности электрического поля.

Электропроводность ионосферы при ωτ >> 1 равна:

, (13)

где 

электропроводность в постоянном (ω = 0) электрическом поле,

τ – среднее время свободного пробега электрона.

С увеличением частоты электромагнитной волны уменьшается ее поглощение в ионосфере.

Мириаметровые волны.



при любом угле падения отражаются от нижней границы ионосферы, практически не проникая в ионизированный слой и мало поглощаясь им. Для длинных волн Земля является хорошим проводником, их отражение происходит практически без потерь энергии.

Возникает поверхностная волна, которая в силу большой длины волны огибает (дифрагирует) препятствия на своем пути (в том числе кривизну земной поверхности) и распространяется на несколько сотен километров.

Гектометровые волны распространяются с образованием пространственной и поверхностной волн Интенсивность пространственной волны в этом диапазоне меньше, чем мириаметровых волн. В дневное время связь на гектометровых волнах осуществляется только посредством поверхностной волны.

Дальность связи при этом меньше, чем на мириаметровых волнах, при той же мощности передатчика, так как потери энергии поверхностной волны в толще Земли быстро растут с повышением частоты. В ночное время существенную роль при приеме на гектометровых волнах играют поверхностные и пространственные волны. Условия распространения пространственной волны в ионосфере меняются, что приводит к случайным изменениям интенсивности результирующей волны – замиранию радиоволн.

Декаметровые волны.



Отражение от ионосферы происходит если угол падения превышает предельное значение а>пред. Главную роль в радиосвязи на декаметровых волнах играет пространственная волна. Особенностью приема в этом диапазоне является существование зон молчания.

Метровые волны не отражаются ионосферой, радиосвязь можно осуществлять только с помощью поверхностной волны, которая практически не дифрагирует и распространяется вдоль поверхности Земли прямолинейно.

8. Классификация радиотехнических цепей

Радиотехничесая электрическая цепь, предназначенную для выполнения каких-либо операций с сигналом сообщения и радиосигналами. Радиотехнические цепи принято разделять на два класса – (линейные и нелинейные цепи), отличающиеся по своим свойствам и математическому описанию.

Цепь является линейной, если линейны составляющие ее элементы. Элемент, подчиняющийся закону Ома, называют линейным. Жестких границ в природе нет. Один и тот же элемент в одних условиях проявляет себя как линейный, в других – как нелинейный.

Типичными нелинейными элементами, часто используемыми в радиотехнических цепях и устройствах, являются электронные приборы (электронные лампы, полупроводниковые диоды, транзисторы).

Электрические свойства линейной радиотехнической цепи определяются индуктивностьюL, емкостьюC и сопротивлениемR.

Если эти параметры не зависят от времени, радиотехническую цепь называют цепью с постоянными параметрами. Важную роль в радиотехнике играют цепи, параметры которых являются функцией времени.

Цепь с зависящими от времени параметрами называют параметрической. В реальной системе имеются как сосредоточенные, так и распределенные по ее длине параметры L, R, C (проводники, соединяющие элементы между собой и т. д.).

Системы с сосредоточенными параметрами называют квазистационарными. Напряжение на различных участках квазистационарной