системы и силы тока в них зависят только от времени и не зависят от координат.
В ряде случаев L, R, C – параметры системы – принципиально нельзя считать сосредоточенными, так как они равномерно распределены по всей длине системы (например, длинные линии и антенны). Размеры систем с распределенными параметрами сравнимы с длиной волны, поэтому сила тока в них и напряжение зависят не только от времени, но и от координат.
Линейные системы описываются линейными алгебраическими или дифференциальными уравнениями в полных производных по времени в случае квазистационарных систем или в частных производных по времени и координате в случае волновых систем.
Параметрические системы описываются линейными дифференциальными уравнениями с переменными (т. е. зависящими от времени) коэффициентами.
Важным свойством линейных систем как с постоянными, так и с переменными параметрами является справедливость для них принципа суперпозиции: отклик линейной системы на внешнее воздействие, являющееся суммой нескольких воздействий, может быть получен как сумма (суперпозиция) откликов на каждое воздействие в отдельности.
В нелинейной системе принцип суперпозиции не выполняется, что с математической точки зрения обусловлено нелинейностью уравнений, описывающих систему.
9. Свободные колебания в LC-контуре
Простой и широко используемой в радиотехнике линейной системой с постоянными параметрами является колебательный контур, содержащий конденсатор C, катушку индуктивности L и сопротивление R. Пусть в момент времени t = 0 на конденсаторе имеется заряд q>0 = CU>0. Закон изменения заряда на конденсаторе найдем на основе закона Кирхгофа:
Учитывая, что
Аналогичные уравнения получаются для напряжений на элементах L и C и для силы тока в контуре. Если ω>0>2 >> α>2, решение уравнения (15) записывается в виде:
q = q>me>->atcos(ωt + φ), (16)
где
Таким образом, при ω>0>2 >> а>2 зависимость заряда на конденсаторе от времени имеет характер затухающего колебания, частота которых ω, называемая частотой свободных колебаний, несколько меньше собственной частоты контура ω>0. Ток в контуре также совершает затухающие колебания:
Начальная амплитуда колебаний:
Важным параметром колебательного контура является добротность Q, характеризующая относительное уменьшение энергии в процессе колебаний:
где W запасенная энергия,
W>t – энергия, теряемая за период.
В цепях постоянного тока существует лишь механизм потери энергии. Это потери на нагревание проводников, определяемые законом Джоуля – Ленца:
P>Ом = I>2R>Ом,
где
Связанные с R>Ом потери энергии называют омическими потерями. В цепях переменного тока, особенно при высокой частоте колебаний, появляются дополнительные механизмы потери энергии, потери на излучение потери в диэлектрике конденсаторов, потери, связанные с токами Фуко и гистерезисом (если катушки индуктивности имеют ферромагнитные сердечники) и др.
Добротность контура определяется по формуле:
10. Вынужденные колебания в последовательном контуре
Контур подключен к источнику внешней гармонической электродвижущей силы с амплитудой ξ>m и начальной фазой φ>е (рис. 3).
e = ξ>mcos(ω)t + φ>e) (19)
В соответствии с законом Кирхгофа получаем:
где
Рис. 3
При нахождении амплитуды и начальной фазы вынужденных колебаний пользуются методом комплексных амплитуд.
Комплексную величину
называют полным сопротивлением или импендансом последовательного контура;