Если отклонения каждого из вариантов от средней величины суммировать, то получится ноль, что свойственно арифметическим невзвешенным и взвешенным средним значениям;
☞ произведение каждого значения признака на соответствующую ему частоту равно произведению средней величины на сумму частот:
Средняя величина есть результат распределения объема совокупности поровну между всеми ее элементами;
☞ сумма квадратов отклонения индивидуальных значений признака от средней арифметической меньше суммы квадратов отклонения от любой другой величины:
если увеличить или уменьшить все варианты осредняемого признака на какое-либо одно и то же число, то объем средней соответственно увеличится или уменьшится на это же число;
☞ если увеличить или уменьшить все варианты осредняемого признака в какое-либо число раз, то объем средней соответственно увеличится или уменьшится в это же количество раз;
☞ от увеличения или уменьшения веса каждого варианта признака в какое-либо число раз величина средней не изменится. Применение данного свойства удобно, если необходимо проанализировать совокупность со значительным количеством элементов, а частота элементов выражена многозначными числами. Если частоты элементов равны между собой, то среднюю можно рассчитать как невзвешенную;
☞ вследствие предыдущего свойства величина средней зависит не от абсолютных значений весов отдельных элементов, а от их доли в общей сумме весов, т. е. если не известны абсолютные выражения весов элементов, а известны пропорции между ними, то они могут использоваться для расчета средней;
☞ средняя арифметическая совокупности, состоящей из постоянных величин, равна этой постоянной:
4. Приведем также формулы расчета средней гармонической, средней геометрической, средней квадратической и средней степенной величин.
Формула расчета степенной средней:
где x>i– величины, для которых исчисляется средняя;
– средняя, где имеет место осреднение индивидуальных значений;
n – частота (повторяемость индивидуальных значений признака).
При к = формула превращается в формулу расчета средней гармонической.
Средняя гармоническая простая (невзвешенная) величина взаимосвязана со средней арифметической невзвешенной как величина, обратная средней арифметической, рассчитанная из обратных значений признака:
Средняя гармоническая взвешенная величина:
где ω – значения сводного, объемного, выступающего как признак-вес показателя.
Рассчитывается, когда имеются данные об объеме определяющего показателя, т. е. произведения осредняемого признака и признака-веса.
Также рассчитывается при наличии сведений об индивидуальных значениях осредняемого признака при отсутствии отдельных значений признака-веса.
Средняя степенная при показателе степени к = 0 становится средней геометрической величиной.
5. К основным видам средних геометрических величин относятся средняя геометрическая невзвешенная и средняя геометрическая взвешенная величины. Расчет средней геометрической невзвешенной величины: если показатель степени k = 0, то формула средней степенной
где П(х>i) – произведение индивидуальных значений осредняемого признака.
Применяется при наличии n коэффициентов роста. Индивидуальные значения признаков при этом становятся относительными величинами динамики (построены в виде цепных величин как отношение к предыдущему уровню каждого уровня в ряду динамики).
Средняя геометрическая невзвешенная величина характеризует средний коэффициент роста.
Средняя геометрическая взвешенная применяется в случае, если темпы роста остаются неизменными в течение нескольких периодов: