✓ максимальное и минимальное значения признака в изучаемой совокупности. Если изменчивость признака вызвана случайными факторами (в случае больших отклонений между крайними значениями и средней), то, возможно, крайние значения нехарактерны для совокупности и их следует исключить из анализа из-за влияния на размер средней величины.


4. Средние величины подразделяются на степенные средние (средняя степенная, средняя арифметическая, средняя гармоническая и т. д.) и структурные средние (мода, медиана).

Осредняемый признак – признак, по которому находится средняя (х). Величина осредняемого признака у любой единицы статистической совокупности составляет его индивидуальное значение, или варианты (х>1, х>2, x>3, … х>n). Частота осредняемого признака – повторяемость индивидуальных значений признака (f).

Один из наиболее распространенных видов средней – средняя арифметическая – исчисляется, когда объем осредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности. Для вычисления средней арифметической величины сумму всех уровней признака делят на их число.

Если некоторые варианты встречаются несколько раз, то сумму уровней признака можно получить умножением каждого уровня на соответствующее число единиц совокупности с последующим сложением полученных произведений; исчисленная таким образом величина – средняя арифметическая взвешенная.

8. Основные виды средних величин

1. Для определения средней арифметической необходим ряд вариантов и частот, т. е. значения х и f

Средняя гармоническая взвешенная тождественна средней арифметической: когда произведения fx одинаковы или равны единице (m = 1), то применяется средняя гармоническая простая:



где х>1 – отдельные варианты.

Если имеется n коэффициентов роста, то формула среднего коэффициента:



Средняя геометрическая равна корню степени n из произведения коэффициентов роста, характеризующих отношение величины каждого последующего периода к величине предыдущего. Средняя квадратическая простая определяется путем извлечения квадратного корня из частного от деления суммы квадратов отдельных значений признака на их число:



Средняя квадратическая взвешенная:



2. Выделяют следующие основные виды средних величин:

☞ по наличию признака-веса: невзвешенная и взвешенная;

охвату совокупности: групповая, общая;

☞ форме расчета: средняя арифметическая, гармоническая, геометрическая, квадратическая, кубическая и т. д. величины.


Данные средние выводятся из формулы степенной средней:



где x>i– величины, для которых исчисляется средняя;

– средняя, где черта сверху свидетельствует о том, что имеет место осреднение индивидуальных значений;

n – частота (повторяемость индивидуальных значений признака).


При при k = – средняя гармоническая; при k = 0 – средняя геометрическая; при k = 2 – средняя квадратическая.

При k = 1 формула расчета степенной средней превращается в формулу расчета средней арифметической:



3. Выделяют следующие основные виды средней арифметической величины: средняя арифметическая невзвешенная, средняя арифметическая взвешенная.

Средняя арифметическая невзвешенная величина наиболее распространена; рассчитывается путем деления значений признака каждого элемента совокупности на число элементов совокупности:



Средняя арифметическая взвешенная величина рассчитывается, если имеются сведения о количестве или доле единиц совокупности каждым значением осредняемого признака:



Выделяют следующие основные свойства средней арифметической величины:

☞ сумма всех отклонений каждого значения признака от среднего арифметического значения равна нулю: