Суперимпликация

Любая теория соотносится со своими логическими следствиями как подчиняющая к подчиненному, согласно отношению суперимпликации. По этой причине позднее мы будем изучать это отношение вместе с обратным отношением более детально. Сейчас же можно указать на одну иллюстрацию данного типа суждений, которая будет несколько сложнее, чем то позволяет традиционный подход. Пусть р обозначает конъюнкцию постулатов и аксиом Евклида, a q обозначает суждение «сумма углов треугольника равна сумме двух прямых углов». В этом случае р является подчиняющей относительно q.

В этой связи полезно сослаться на проводимое в традиционной логике различие между непосредственными умозаключениями (умозаключениями в несобственном смысле) и опосредованными умозаключениями (умозаключениями в собственном смысле). Умозаключение называется «непосредственным», когда вывод делается из одной посылки; умозаключение называется «опосредованным», когда вывод делается, по крайней мере, из двух посылок. Однако данное различие не является значимым, если любые два суждения можно соединить в единое суждение. Кроме этого, следует помнить, что для обоснованности некоторых форм так называемых непосредственных умозаключений требуются особые допущения.

В логике в одних случаях проводилось очень четкое различие между эквивалентными суждениями, а в других случаях, наоборот, ставился вопрос о том, являлись ли вообще «подлинными» умозаключениями непосредственные умозаключения от одного суждения к эквивалентному суждению. Однако размышление над данным вопросом показывает, что данное разногласие, по крайней мере отчасти, происходит вследствие того, что логики забывают, насколько произвольным является различие между суждением и тем, что оно имплицирует. Два суждения, связанные подобным отношением, таким, что если первое истинно, то второе также истинно, и если первое ложно, то второе тоже ложно, считаются тождественными исключительно для целей логики. Поэтому не имеет большого значения то, как мы назовем противопоставление предикату: непосредственным умозаключением от исходного суждения или же будем рассматривать его как суждение, эквивалентное исходному. Тем не менее, несмотря на то что два эквивалентных суждения являются тождественными относительно истинностного значения, конвенциональное значение заключения зачастую является переработкой значения посылки. Также справедливо и то, что разграничительная линия между эквивалентными суждениями, которые не обладают в точности одним и тем же значением, не является четкой.

Следует сказать о двух особых случаях непосредственного умозаключения, подпадающих под отношение подчинения. Они демонстрируют природу логики отношений, которая стала систематически изучаться лишь с недавних пор.

а) Умозаключение с добавленными детерминантами

Мы можем умозаключить от одного суждения к другому, если ограничим субъект и предикат посылки тем же детерминантом. Так, из суждения «любители нюхательного порошка являются потребителями табака» мы можем вывести суждение «американские любители нюхательного порошка являются американскими потребителями табака». Из суждения «все папы являются итальянцами» мы можем вывести суждение «все высокие папы являются высокими итальянцами». Данные суждения, однако, не являются эквивалентными. Из суждения «все американские профессора являются американскими учеными» мы не можем вывести суждение «все профессора – ученые».

Добавлять детерминант к субъекту и предикату следует с осторожностью, поскольку детерминант должен иметь в обоих случаях одно и то же значение. Так, если мы делаем умозаключение и выводим из суждения «все мужья являются добытчиками денег» суждение «все неудачливые мужья являются неудачливыми добытчиками денег», то детерминант «неудачливый» не имеет одного и того же значения, будучи примененным к субъекту и предикату, несмотря на то что в обоих случаях использовано одно и то же слово. Муж является неудачливым относительно своих функций как мужа, а добытчик денег является неудачливым относительно своих функций по добыче средств. Следовательно, детерминанты, значение которых подразумевает ссылку на различные стандарты, не могут использоваться для умозаключения с добавленным детерминантом.