Первый ряд содержит четыре категорических суждения. Второй ряд содержит соответствующие обверсивные суждения. Третий ряд содержит конверсивные суждения относительно суждений из второго ряда. А четвертый ряд содержит обверсивные суждения относительно суждений из третьего ряда.
Суждения в третьем ряду называются частично противопоставленными (контрапозитивными) предикату суждений в первом ряду. Частично противопоставленное предикату суждение относительно какого-либо суждения – это суждение, в котором субъект является противоречием предиката исходного суждения, тогда как предикат является субъектом исходного суждения. Частично противопоставленное предикату суждение также отличается от исходного суждения по качеству. Суждения типа I не имеют частично противопоставленных предикату суждений, а суждения типа Е обретают частично противопоставленное предикату суждение только посредством ограничения. Суждения, частично противопоставленные предикату суждений типа А и О, эквивалентны исходным суждениям.
Суждения в четвертом ряду являются суждениями, полностью противопоставленными предикату соответствующих суждений из первого ряда. Суждение, полностью противопоставленное предикату некоторого другого суждения, – это суждение, в котором субъект является противоречием исходного предиката, а предикат – противоречием исходного субъекта. Полностью противопоставленное предикату суждение имеет то же качество, что и исходное суждение. Как и в случае с частично противопоставленным предикату суждением, суждения типа I не обладают суждениями, полностью противопоставленными предикату, а суждения типа Е обретают их только посредством ограничения.
Превращенное конверсное суждение
Проводя серии превращений и обращений именно в таком порядке, мы получали эквивалентные суждения для каждого из четырех типов категорических суждений. Однако если мы сначала преобразуем суждения с помощью обращения, а затем с помощью превращения, то получим иной набор эквивалентных суждений. Результаты такой операции приводятся в таблице ниже:
Следует отметить, что суждения типа Е и I обладают превращенными конверсными суждениями без посредства ограничения, суждения типа А обретают превращенное конверсное суждение посредством ограничения, тогда как суждения типа О вообще таковыми не обладают.
Инверсия
Дано суждение «все физики являются математиками». Что можно заключить об отношении не-физиков к математикам или к не-математикам? Рассмотрим, к каким заключениям можно обоснованно прийти с помощью обращений и превращений.
Мы можем начать с обращения данного суждения, затем осуществить превращение и т. д. до тех пор, пока не получим требующееся суждение; или же мы можем начать с превращения и продолжить обращением и т. д. Попробуем развить эти два метода в параллельных столбцах. Первый метод – в левом столбце, второй – в правом:
Следовательно, если мы сначала обратим суждение типа А, мы вскоре вынуждены будем остановиться, поскольку суждение типа О не может быть обращено. Если же мы сначала превратим суждение А, то получим два суждения, которые будут удовлетворительными. «Некоторые не-физики не являются математиками» называется частично инверсивным суждением относительно исходного суждения. Его субъект является противоречием исходного субъекта, а его предикат совпадает с исходным предикатом. «Некоторые не-физики являются не-математиками» называется полностью инверсивным суждением. В нем как субъект, так и предикат противоречат исходным субъекту и предикату соответственно.