Роботизированная автоматизация процессов (РАП)

Эта технология выполняет структурированные цифровые задачи (то есть задачи, связанные с информационными системами) так, как если бы их выполнял человек, следующий сценарию или правилам. Не все согласны, что РАП принадлежит к семейству технологий ИИ и когнитивных технологий, поскольку она не слишком интеллектуальна. Однако системы РАП популярны и автоматизированы, а их интеллектуальность растет, поэтому я включаю их в мир ИИ. Иногда их называют цифровой рабочей силой. В сравнении с другими формами ИИ они не слишком дороги и просты в программировании. При этом их работа прозрачна. Если вы умеете пользоваться мышкой, понимаете графические модели технологических процессов и готовы создать несколько бизнес-правил «если – то», вы в состоянии разобраться в этой технологии и, возможно, даже разработать РАП. Настраивать и внедрять такие системы также гораздо проще, чем разрабатывать собственные программы, используя язык программирования.

РАП не задействует роботов – только компьютерные программы на серверах. Опираясь на сочетание рабочего процесса, бизнес-правил и интеграции «уровня представления» с информационными системами, она функционирует как полуинтеллектуальный пользователь этих систем. Порой РАП сравнивают с макрокомандами электронных таблиц, но я считаю такое сравнение некорректным, поскольку РАП может справляться с гораздо более сложными задачами. Ее также сравнивают с инструментами управления бизнес-процессами, которые могут управлять рабочим процессом, но на самом деле технология была создана для того, чтобы документировать и анализировать процесс, а не автоматизировать его[16].

Некоторые системы РАП уже в определенной степени наделены интеллектом. Они могут «наблюдать» за тем, как работают их коллеги-люди (например, как они отвечают на частые вопросы клиентов), и имитировать их действия. Другие сравнивают процесс автоматизации с машинным зрением. Как и физические роботы, системы РАП постепенно становятся более интеллектуальными, а для управления их поведением начинают использоваться другие типы технологий ИИ.

Я описал эти технологии по отдельности, но все чаще они объединяются и интегрируются. Однако сегодня человеку, принимающему бизнес-решения, очень важно знать, какие технологии какие задачи выполняют. Директор по информационным технологиям Global Inc. Кришна Натан отмечает, что в 2018 г. один из ключевых приоритетов его компании – «помочь акционерам понять, на что способен и не способен ИИ, чтобы использовать его должным образом»[17]. Возможно, в будущем эти технологии окажутся так тесно переплетены, что необходимость в таком понимании исчезнет, а возможно, технологии вообще станут неотделимы друг от друга.

ИИ в сообществе поставщиков технологий

В этой книге я в основном рассказываю об использовании когнитивных технологий крупными предприятиями в таких сферах, как предоставление финансовых услуг, производство и телекоммуникация. Но большая часть работы, выполняемой крупными коммерческими предприятиями, стала возможной благодаря исследованиям и разработкам, проводившимся в тех же местах, где в 2000-х гг. развивались технологии больших данных (включая Hadoop, Pig и Hive). В этот период Google, Facebook и в меньшей степени Yahoo! направляли значительные усилия на развитие технологий ИИ. Эти компании располагали огромным объемом данных для анализа, огромным количеством денег (по крайней мере в случае Google и Facebook) и прочными связями с учеными.