Таким образом, эквивалентность есть такая связь, которая при решении определенной задачи позволяет один объект замещать другим, вообще говоря, отличным от первого[69].
Естественно, что дальше встает вопрос: когда, то есть при каких условиях и как можно производить это замещение? И вся геометрия в этой связи может быть рассмотрена как наука об условиях и правилах эквивалентного замещения.
Основные мыслительные операции
Операцией задания называется такая мыслительная операция, путем которой объекты задаются в некоторой связи. Например, в задаче на построение параллелограмма, равновеликого данному треугольнику, параллелограмм и треугольник задаются в количественной связи. Они задаются как количественно тождественные. Но от количественной связи мы не можем переходить непосредственно к качественной. Нам же такой переход необходим с тем, чтобы в дальнейшем перейти от качественной связи к качественной определенности параллелограмма как отдельного [объекта]. Как это сделать?
Мы можем выбрать любую качественную связь треугольника и параллелограмма и от нее прийти к количественной. Такой качественной связью может быть, например, расположение треугольника и параллелограмма. Пусть треугольник и параллелограмм находятся на одном и том же основании и между теми же параллельными.
Мы задаем, таким образом, треугольник и параллелограмм в некоторой качественной связи. Путем дальнейшего мышления мы приходим к количественной связи.
Задаваться объекты могут в количественных и в качественных связях равным образом. Задание различается по способу на количественное и качественное.
Качественно объекты могут быть заданы трояким образом:
1. Объекты могут быть заданы через связь некоторых своих элементов. Например, пусть два треугольника имеют две стороны с равными углами между ними.
2. Два объекта могут быть заданы относительно третьего. Например, две прямые, параллельные третьей прямой.
3. Наконец, объекты могут быть заданы и относительно своих элементов, и относительно другого какого-либо объекта (или нескольких объектов).
Когда же объекты заданы в некоторой качественной связи, нам необходимо выявить некоторую их количественную связь.
Операция, путем которой мы, выражая один из качественно тождественных объектов в другом, получаем количественное определение первого относительно второго, называется сравнением.
Так, например, если нам даны треугольники на одном и том же основании и между теми же параллельными, то мы можем определить их количественную связь.
Рассмотрим простейший случай определения количественной связи.
Пусть нам даны два треугольника. Пусть у каждого из этих треугольников две стороны и угол между ними равны двум сторонам и углу между ними другого треугольника. Путем наложения определяется количественное их определение друг относительно друга.
Операция сравнения в непосредственно-чувственной форме выполнима, если: 1) сравниваемые качественно тождественны, 2) сравниваемые обладают простейшей структурой, 3) сравниваемые могут быть перемещаемыми в пространстве.
Однако эти три условия не всегда соблюдены в самих объектах, тогда приходится прибегать к некоторым другим способам решения задачи. Один из наиболее распространенных способов мы и рассмотрим в следующем параграфе.
В случаях, когда сравнение невыполнимо в непосредственно-чувственной форме, мы прибегаем к особой операции, называемой извлечением. В этом случае мы должны иметь, кроме сравниваемых объектов, некоторое понятие.