Плоская система сходящихся сил находится в равновесии, если алгебраическая сумма проекций всех сил системы на любую ось равна нулю.
Система уравнений равновесия плоской системы сходящихся сил:
При решении задач координатные оси выбирают так, чтобы решение было наиболее простым. При этом желательно, чтобы хотя бы одна неизвестная сила совпадала с осью координат.
5. Пара сил. Момент силы
Парой сил называется система двух сил, равных по модулю, параллельных и направленных в разные стороны.
Пара сил вызывает вращение тела, и ее действие на тело оценивается моментом. Силы, входящие в пару, не уравновешиваются, так как они приложены к двум точкам.
Действие этих сил на тело не может быть заменено одной равнодействующей силой.
Момент пары сил численно равен произведению модуля силы на расстояние между линиями действия сил плеча пары.
Момент считается положительным, если пара вращает тело по часовой стрелке.
M(f,f') = Fa; M > 0.
Плоскость, проходящая через линии действия сил пары, называется плоскостью действия пары.
Свойства пар сил.
1. Пару сил можно перемещать в плоскости ее действия.
2. Эквивалентность пар. Две пары, моменты которых равны, эквивалентны (действие их на тело аналогично).
3. Сложение пар сил. Систему пар сил можно заменить равнодействующей парой.
Момент равнодействующей пары равен алгебраической сумме моментов пар, составляющих систему:
M>Σ = F>1a>1 + F>2a>2 + F>3a>3 + … + F>na>1;
Равновесие пар. Для равновесия пар необходимо и достаточно, чтобы алгебраическая сумма моментов пар системы равнялась нулю:
Момент силы относительно точки. Сила, не проходящая через точку крепления тела, вызывает вращение тела относительно точки, поэтому действие такой силы на тело оценивается моментом.
Момент силы относительно точки численно равен произведению модуля силы на расстояние от точки до линии действия силы. Перпендикуляр, опущенный из точки на линию действия силы, называется плечом силы.
Момент обозначается:
M>O= (F) или m>O(F).
Момент считается положительным, если сила разворачивается по часовой стрелке.
6. Плоская система произвольно расположенных сил
Теорема Пуансо о параллельном переносе сил.
Силу можно перенести параллельно линии ее действия, при этом нужно добавить пару сил с моментом, равным произведению модуля силы на расстояние, на которое перенесена сила.
Приведение к точке плоской системы произвольно расположенных сил.
Все силы системы переносят в одну произвольно выбранную точку, называемую точкой приведения. При этом применяют теорему Пуансо. При любом переносе силы в точку, не лежащую на линии действия, добавляют пару сил.
Появившиеся при переносе пары называют присоединенными парами.
Образующуюся систему пар сил можно заменить одной эквивалентной парой – главным моментом системы.
Главный вектор равен геометрической сумме векторов произвольной плоской системы сил.
Главный момент системы сил равен алгебраической сумме моментов сил системы относительно точки приведения.
M>ГЛ 0 = m>1 + m>2 + m>3 + … + m>n;
Влияние точки приведения. Точка приведения выбрана произвольно. При изменении положения точки приведения величина главного вектора не изменится.
Величина главного момента при переносе точки приведения изменится, так как меняются расстояния векторов-сил до новой точки приведения.
На основании теоремы Вариньона о моменте равнодействующей можно определить точку на плоскости, относительно которой главный момент равен нулю. Тогда произвольная плоская система может быть заменена одной силой – равнодействующей системы сил.
Численно равнодействующая равна главному вектору системы сил, но приложена к другой точке, относительно которой главный момент равен нулю. Равнодействующая обозначается