Дело в том, что меня совсем не пугает общая теория относительности Эйнштейна (хотя я ее и не до конца понимаю) или существование нейтрино. Если бы я жил в XIX веке и мне бы рассказали о теории относительности и ее следствиях – черных дырах, гравитационных волнах, искривлении пространства и замедлении времени – то смог ли бы я поверить этому в отсутствие убедительных доказательств? Если бы кто-то сказал мне, что огромное количество незаряженных частиц с почти нулевой массой – то есть нейтрино – ежесекундно проносятся сквозь мое тело со скоростью света, разве я не рассмеялся бы в ответ? Но созданная Эйнштейном в 1915 году теория была подтверждена спустя четыре года, а нейтрино были впервые обнаружены в 1956-м – как раз тогда, когда я родился. И то и другое – это части Вселенной, в которой я вырос. Вселенной, с которой я свыкся. Что же касается столь же парадоксальных новых причуд природы, то, может быть, я просто слишком консервативен.

И все же надо проявлять осторожность. Бывало, что ученые ошибались, и, вообще-то, довольно часто. Дорога к более точному пониманию Вселенной усеяна отвергнутыми теориями, и ученые цеплялись за неверные гипотезы дольше, чем те этого заслуживали. Дело в том, что научное сообщество консервативно. Даже столкнувшись с опровергающими свидетельствами, ученые скорее подправят существующую теорию для согласования ее с противоречащими ей данными, чем отправят ее на свалку. Если, конечно, не появится более успешная теория.

Например, после того, как голландский физик Христиан Гюйгенс в XVII веке опубликовал свою волновую теорию света, ученые долгое время полагали, что «пустое» пространство заполнено так называемым эфиром – средой, в которой, как считалось, распространяются световые волны. Когда выполненные впоследствии опыты дали результаты, противоречащие столь простым первоначальным представлениям, то физики не отвергли саму концепцию, а подправили ее так, чтобы она лучше согласовалась с наблюдениями. В итоге они загнали себя в тупик – получалось, что эфир должен представлять собой бесконечную прозрачную невязкую жидкость с нулевой плотностью, но при этом обладающую невероятной жесткостью. И только в 1905 году, когда благодаря специальной теории относительности Эйнштейна эфир стал ненужным, ученые отказались от него.

Нечто похожее произошло в конце XVIII века, когда химикам пришлось скрепя сердце признать, что нет такой вещи, как флогистон. Считалось, что этот огненный элемент выделяется при воспламенении горючих веществ. Вещество могло гореть, только пока оно было способно выделять флогистон. Прекращение горения при недостатке воздуха объясняли ограниченным количеством флогистона, которое было способно принять заданное количество воздуха. Эта привлекательная идея была выдвинута около 1700 года немецким химиком Георгом Шталем, и у нее было много приверженцев, даже когда в ходе опытов выяснилось, что некоторые металлы – например магний – после горения становились тяжелее, что очень странно, – ведь, согласно теории, при горении часть вещества должна была высвобождаться. Сторонники же теории флогистона просто заключили, что флогистон обладает отрицательной массой! Им пришлось признать свое окончательное поражение в 1783 году, когда французский химик Антуан Лавуазье убедительно показал, что горение – это химический процесс, для которого необходим кислород – элемент, чьи свойства только в то время начали понимать.

Наконец, я не могу удержаться от того, чтобы привести самый известный случай, когда ученые цеплялись за неверную теорию: это птолемеевская система эпициклов. Птолемей построил свою хитроумную геоцентрическую картину мира на основе двух вполне правдоподобных (во всяком случае, с точки зрения древних греков) предположений, а именно – что Земля находится в центре Вселенной и что небесные тела движутся с постоянной скоростью по идеальным окружностям. Согласно этой созданной во II веке нашей эры теории, каждая планета движется по малой окружности (эпициклу), пустой центр которой обращается вокруг Земли по гораздо большей окружности, называемой деферентом.