Итак, нейрон собирает большое количество разнородной информации и обобщает (интегрирует) ее, сводя все разнообразие полученных сведений к выбору одного из двух решений: «выстрелить» потенциалом действия, передав тем самым обобщенный итог своих раздумий другим нейронам, или не делать этого. Отсутствие сигнала тоже в некотором смысле является сигналом: оно сигнализирует о том, что данный нейрон, обобщив все доступные ему данные, принял решение пока не возбуждаться.

Свойственный нейронам максимализм (принцип «все или ничего») не абсолютен. Это справедливо только для отдельного потенциала действия. Но нейроны работают в реальном времени, и когда они получают очень много возбуждающих сигналов, они разражаются быстрой серией потенциалов действия, следующих один за другим, – строчат как пулемет (едва успевая перед каждым новым «выстрелом» перекачать ионы натрия из клетки наружу). Если возбуждающих сигналов становится меньше, частота импульсов соответственно снижается. Таким образом, нейрон может передавать и количественную информацию, которая кодируется частотой импульсов.

Сегодня, когда каждый человек хоть немного, но знаком с принципами работы компьютеров, никому из прочитавших это описание, наверное, не нужно долго объяснять, что нейрон – превосходный элементарный блок для сборки вычислительных устройств любой степени сложности. Даже таких сложных, как человеческий разум.

В мозге человека, по современным оценкам, примерно 100 млрд (10>11) нейронов (в мозге мыши – около 10>7, в мозге мушки дрозофилы – примерно 10>5). Типичный нейрон имеет от 10>3 до 10>4 синапсов. Итого получаем 10>14—10>15 синапсов на душу населения. Даже самое примитивное, сверхупрощенное и сверхсжатое описание структуры синаптических связей мозга, отражающее только то, какие два нейрона контактируют при помощи данного синапса (указываем для каждого синапса два числа – порядковые номера нейронов, по 4 байта на номер), едва поместится на жесткий диск емкостью в 1000 терабайт. Это называется петабайт, и таких дисков, насколько мне известно, еще не делают. Мозг – серьезное устройство, современным компьютерам до него очень далеко.

Чем мозг отличается от компьютера

Некоторые отличия мы уже знаем. В компьютере все сигналы, которыми обмениваются элементы логических схем, имеют одну и ту же природу – электрическую, и сигналы эти могут принимать только одно из двух значений – 0 или 1. Передача информации в мозге основана не на двоичном коде, а скорее на троичном. Если возбуждающий сигнал соотнести с единицей, а его отсутствие – с нулем, то тормозящий сигнал, пожалуй, можно уподобить минус единице. Но это все-таки чрезмерное упрощение. На самом деле в мозге используются химические сигналы нескольких десятков типов – все равно как если бы в компьютере использовались десятки разных электрических токов (или наряду с электричеством использовались световые лучи, струйки воды, зубчатые передачи, потоки воздуха и много всего другого), а нули и единицы могли бы иметь десятки разных… ну, скажем, цветов или каких-то иных качеств.

В принципе можно представить себе мозг, работающий только на одном нейромедиаторе. Или на двух – одном возбуждающем и одном тормозящем. Но тогда пришлось бы обходиться без нейромодуляторов и без внесинаптической передачи. Выброс универсального нейромедиатора во внеклеточное пространство и его восприятие внесинаптическими рецепторами в таком мозге были бы похожи на короткое замыкание. Без возможности выбрасывать разные медиаторы по выбору внесинаптическая передача потеряла бы смысл. Значит, все логические схемы пришлось бы четко и однозначно «прошивать» в железе, то есть фиксировать в системе синаптических связей. Это создало бы технические трудности при кодировании таких «общесистемных» сигналов (или настроек), как эмоции. Это создало бы еще более серьезные проблемы с гормональной регуляцией жизнедеятельности, поскольку гормональная регуляция – естественное продолжение нервной. Многие нейромедиаторы по совместительству являются и важнейшими гормонами