. Когда нейрон получает возбуждающий сигнал, это повышает вероятность того, что нейрон возбудится, то есть сгенерирует электрический нервный импульс, который побежит по аксону до самых его кончиков и вызовет выброс нейромедиатора. Тормозящие сигналы, напротив, снижают вероятность этого события.

У одного нейрона могут быть тысячи «пунктов приема информации» – постсинаптических мембран, не говоря уж о внесинаптических рецепторах. Таким образом, нейрон собирает большое количество данных из окружающего мира. Речь идет, конечно, о мире, окружающем нервную клетку, а не вас. Эти данные имеют вид сложного аккорда из множества возбуждающих и тормозящих сигналов.

На основе собранных данных нейрон делает одно из двух: либо возбуждается, либо нет. Нейрон «рассуждает» строго дискретно, категориально. Он интегрирует обширную информацию и принимает на ее основе одно из двух возможных решений. Все переливы и полутона входящих сигналов превращаются в черное или белое, в «да» или «нет». Если общая сумма возбуждающих сигналов превосходит общую сумму тормозящих сигналов на некую вполне определенную величину, нейрон возбуждается – производит нервный импульс (его еще называют потенциалом действия), который бежит по аксону прочь от тела нейрона, добегает до аксонных окончаний и заставляет их выбросить порцию нейромедиатора. Она в свою очередь будет воспринята каким-то другим нейроном как сигнал – либо тормозящий, либо возбуждающий.

Сила переданного сигнала, то есть размер порции нейромедиатора, выброшенного нервным окончанием, не зависит от силы потенциала действия. Последнюю можно, как в компьютере, считать равной 0 или 1 – все или ничего. Размер выброшенной порции медиатора зависит лишь от состояния нервного окончания в данный момент. Чем определяется это состояние, будет сказано ниже. Пока лишь запомним, что порция может быть разной, а от потенциала действия зависит лишь, будет она выброшена или нет.

Механизм возбуждения нейрона основан на перекачке заряженных частиц (ионов) из цитоплазмы клетки во внешнюю среду или обратно. В спокойном состоянии мембрана нейрона поляризована: у ее внутренней стороны скапливаются отрицательно заряженные частицы, у наружной преобладают заряженные положительно, в том числе ионы натрия Na>+. Если нейрон «решает» возбудиться, в его мембране открываются особые ворота – натриевые каналы, по которым ионы натрия устремляются внутрь клетки, притягиваемые скопившимися там отрицательными зарядами. Это приводит к деполяризации – выравниванию электрических потенциалов по обе стороны мембраны.

Деполяризация «заразна»: когда один участок мембраны деполяризуется, это стимулирует деполяризацию соседних участков. В результате волна деполяризации быстро бежит по аксону. Это, собственно, и есть потенциал действия, он же нервный импульс.

После каждого импульса нейрону нужно некоторое время, чтобы перекачать ионы натрия из клетки обратно на наружную сторону мембраны и тем самым снова привести мембрану в «рабочее», то есть поляризованное состояние. Пока это не сделано, нейрон не может сгенерировать новый нервный импульс.

На самом деле, конечно, все гораздо сложнее{1}. Описанная картина так сильно упрощена, что автор даже опасается, как бы специалисты-нейробиологи не обвинили его в дезинформировании населения. Но это, напомню, не учебник, а для понимания того, о чем пойдет речь в этой и последующих главах, сказанного достаточно. Более полную и подробную информацию о работе нейронов читатель может без труда найти в соответствующих учебниках, справочниках или в интернете. Достаточно сделать поиск по словам «нейрон», «синапс» и «потенциал действия».