Затем, если зеркало такое хорошее, что вы едва его замечаете, вы увидите в зеркале еще одну линейку. Эта линейка представляет собой отражение той, что лежит у ваших ног, и счет ее делений идет в обратном направлении.
Прослеживая взглядом эту линейку, вы отсчитываете 1 см, потом 2, 3, 4 и так далее и, наконец, 100 см. Тогда, посмотрев вверх, вы увидите в зеркале самого себя, смотрящего вам в глаза! Ваше зеркальное отражение выглядит в точности как вы – с той лишь разницей, что вы находитесь на +100 см, а ваш двойник на -100 см.
Между вами и вашим двойником есть и другие различия. Однако пока давайте думать только о том, что вы находитесь на +100 см, а ваш двойник на -100 см.
2. В примечаниях 2, 3 и 4 обсуждаются более удивительные характеристики комплексных чисел. Вы можете выражать геометрию комплексных чисел тригонометрически, то есть в терминах углов.
Примем, что 9 – это угол между R и осью х, как показано ниже на рис. 8.4 (tan означает тангенс, cos означает косинус; tan(θ) означает тангенс угла 9).
Рис. 8.4 Комплексное число, выраженное в терминах углов Более подробно о комплексных числах можно прочитать в книгах Руэла В. Чарчхилла «Комплексные переменные и приложения» (Ruel V. Churchill. Complex Variables and Applications) и Ханса Швердтфегера «Геометрия комплексных чисел» (Hans Schwerdtfeger. Geometry of Complex Numbers).
Математики называют [cos(θ) + isin(θ)] угловым множителем комплексного числа и в соответствии с законами алгебры и тригонометрии обозначают его как е>iθ. Число е может использоваться для сокращения длинных тригонометрических выражений, что делает вычисления простыми. Это отчасти связано с той особенностью показательных функций, что для двух углов θ, и θ>2 мы имеем
отсюда z = R[cos(θ) + isin(θ)] = Re>iθ.
3. Приведенное выше уравнение z = K[cos(θ) + isin(θ)] = Кei>θ означает, ни много ни мало, что z имеет периодическое поведение, поскольку при возрастании угла 9 cos(θ) и isin(θ) претерпевают периодические волнообразные изменения. Иными словами, имеются две волны – одна действительная, а другая мнимая, или не совпадающая по фазе с действительной на 900. См. рис. 8.5
Рис. 8.5. Периодическое движение x и у
С показательными функциями (экспонентами) иметь дело легче, чем с синусами и косинусами. Поэтому в физике для представления колебаний постоянно используются комплексные числа в форме ei(θ1+ θ2) ei(θ1+ θ2). Для представления колебаний, которые можно измерять, например качания маятника, используется только действительная часть числа z. Мнимым элементом пренебрегают.Хорошее элементарное обсуждение математики и волн для ученых можно найти в фейнмановских «Лекциях по физике» (том I, гл. 23).Еще один интересный аспект действительных и мнимых чисел состоит в том, что действительный и мнимый аспекты z подобны двум разным измерениям реальности, двигающимся вместе, но не вполне вместе. Вообще, если действительная и мнимая оси вращаются, мы можем видеть, что ось мнимого числа Y всегда отстает от действительной оси X на угол 90°, как показано на рис. 8.6.
Рис. 8.6. Вращение комплексной плоскости на 90 градусов
По аналогии можно сказать, что воображаемый мир всегда находится в другом измерении по отношению к реальному или, наоборот, что при возрастании 9 оси X и Y выглядят как две волны – одна впереди, а другая чуть позади, – как если бы они были барабанами, звук которых отдается эхом «бум бум», пауза, «бум бум», пауза, «бум бум» и так далее. Две волны, не совпадающие по фазе друг с другом, графически показаны на рисунке выше. Это аналогично ритму музыки на заднем плане нашего переживания.