Принцип эквивалентности и приведенный пример его проявления будут справедливы лишь в том случае, если инертная масса (входящая во второй закон Ньютона, который определяет, какое ускорение придает телу приложенная к нему сила) и гравитационная масса (входящая в закон тяготения Ньютона, который определяет величину гравитационного притяжения) суть одно и то же (см. гл. 4). Если эти массы одинаковы, то все тела в гравитационном поле будут падать с одним и тем же ускорением независимо от массы. Если же эти две массы не эквивалентны, тогда некоторые тела под влиянием гравитации будут падать быстрее других и это позволит отличить действие тяготения от равномерного ускорения, при котором все предметы падают одинаково. Использование Эйнштейном эквивалентности инертной и гравитационной масс для вывода принципа эквивалентности и, в конечном счете, всей общей теории относительности – это беспрецедентный в истории человеческой мысли пример упорного и последовательного развития логических заключений.
Теперь, познакомившись с принципом эквивалентности, мы можем проследить ход рассуждений Эйнштейна, выполнив другой мысленный эксперимент, который показывает, почему гравитация воздействует на время. Представьте себе ракету, летящую в космосе. Для удобства будем считать, что ее корпус настолько велик, что свету требуется целая секунда, чтобы пройти вдоль него сверху донизу. И наконец, предположим, что в ракете находятся два наблюдателя: один – наверху, у потолка, другой – внизу, на полу, и оба они снабжены одинаковыми часами, ведущими отсчет секунд.
Конец ознакомительного фрагмента.