С помощью этой фигуры хорошо видно, что десять – это сумма одного, двух, трех и четырех; иными словами, первых четырех целых чисел. Аристотель рассказывает нам, что Эврит вместо чисел использовал камешки и благодаря такому способу получал «квадратные» и «прямоугольные» числа>4. Если мы начнем с единицы и будем добавлять нечетные числа, располагая их в форме «гномона», то получим «квадратные» числа, а если мы начнем с двойки и будем добавлять четные числа, то получим «прямоугольные».
Такое использование чисел в виде фигур или связи числа с геометрией помогает понять, почему пифагорейцы рассматривали объекты как сами числа, а не просто как исчислимые предметы. Они перенесли свои математические концепции на порядок, которому подчиняется вещественная реальность. Так, путем наложения нескольких точек образуется линия, не просто в воображении математика, но и во внешней реальности; аналогичным образом поверхность образуется путем наложения нескольких линий, а тело – путем сочетания нескольких поверхностей. Точки, линии и поверхности, таким образом, являются реальными элементами, из которых состоят все тела в природе, и в этом смысле все тела следует рассматривать как числа. В самом деле, любое материальное тело служит выражением числа 4 (тетрактос), поскольку оно состоит, как четвертая стадия, из трех элементов (точек, линий, поверхностей). Но насколько отождествление предметов с числами может быть приписано привычке представлять числа в виде геометрических фигур и как далеко пифагорейские открытия в области музыки распространялись на весь мир, сказать исключительно трудно. Бернет считает, что первоначальное отождествление вещей с числами было основано на открытии, что все музыкальные звуки могут быть сведены к числам, а не на отождествлении чисел с геометрическими фигурами. Однако, если рассматривать объекты – как, очевидно, пифагорейцы их и рассматривали – как сумму определенного количества материальных точек и если в то же самое время рассматривать числа с геометрической точки зрения как суммы точек, очень легко представить себе, как был сделан следующий шаг, а именно отождествление объектов с числами>5.
Аристотель, в уже цитировавшемся выше изречении, говорит, что пифагорейцы утверждали, что элементами числа являются «чет и нечет, из которых первые являются беспредельными, а вторые – предельными». Откуда взялось утверждение о беспредельности и предельности чисел? Для пифагорейцев ограниченный космос или мир был окружен беспредельным или безбрежным космосом (воздухом), которым он «дышит». Таким образом, объекты ограниченного космоса не отделены наглухо от беспредельного, но содержат в себе примесь его. Пифагорейцы, рассматривая числа с геометрической точки зрения, считали, что они (будучи четными и нечетными) тоже являются продуктами предельного и беспредельного. С этой точки зрения тоже было очень легко перейти к отождествлению чисел с объектами; причем четные числа отождествлялись с беспредельными, а нечетные – с предельными. В качестве объяснения можно привести тот факт, что гномон нечетных чисел составляет фиксированную форму квадрата (предельная фигура), в то время как гномон четных чисел составляет постоянно изменяющуюся форму прямоугольника (беспредельная фигура).
Когда дело дошло до определения, какое число соответствует какому объекту, фантазия пифагорейцев разыгралась. Например, можно понять, почему справедливости соответствует число 4, но кто объяснит, почему польза – это 7, а живость – 6? 5 было провозглашено числом, олицетворяющим брак, поскольку 5 состоит из 3 – первого мужского числа – и 2 – первого женского числа. Тем не менее, несмотря на все эти причуды фантазии, пифагорейцы внесли очень большой вклад в развитие математики. Теорему Пифагора как геометрический факт применяли в своих вычислениях еще шумеры: однако пифагорейцы, как отмечает Прокл, вышли за границы простых арифметических и геометрических фактов и свели их в дедуктивную систему, хотя она, конечно, сначала была элементарной. В целом геометрия пифагорейцев, можно сказать, составляет основную часть книг Евклида I, II, IV, VI (и, возможно, III) с указанием, что пифагорейская теория пропорций неприменима в области несоразмерных величин. Теория, решившая эту проблему, была создана при Евдоксе в Академии.