SIS-модель представляет собой важный инструмент для изучения динамики распространения инфекционных заболеваний и принятия решений в области общественного здравоохранения, особенно там, где не предполагается приобретение стойкого иммунитета после выздоровления.

Рассмотрим пример реализации SIS-модели на языке Python с использованием библиотеки `numpy` для вычислений и `matplotlib` для визуализации:

```python

import numpy as np

import matplotlib.pyplot as plt

def sis_model(beta, gamma, susceptible, infected, days):

N = susceptible + infected

S = [susceptible]

I = [infected]

for _ in range(days):

new_infections = beta * S[-1] * I[-1] / N

new_recoveries = gamma * I[-1]

susceptible -= new_infections

infected += new_infections – new_recoveries

S.append(susceptible)

I.append(infected)

return S, I

# Параметры модели

beta = 0.3 # Скорость инфекции

gamma = 0.1 # Скорость выздоровления

susceptible = 990

infected = 10

days = 160

# Запуск модели

S, I = sis_model(beta, gamma, susceptible, infected, days)

# Визуализация результатов

plt.figure(figsize=(10, 6))

plt.plot(S, label='Susceptible')

plt.plot(I, label='Infected')

plt.xlabel('Days')

plt.ylabel('Population')

plt.title('SIS Model')

plt.legend()

plt.grid(True)

plt.show()

```




Этот код создает функцию `sis_model`, которая моделирует SIS-модель в течение определенного количества дней. Затем задаются параметры модели и вызывается функция `sis_model` с этими параметрами. Результаты моделирования визуализируются с помощью библиотеки `matplotlib`.

На графике, полученном в результате выполнения этого кода, можно увидеть изменение численности двух категорий популяции – восприимчивых к инфекции (Susceptible) и инфицированных (Infected) – в течение времени (в днях), согласно модели SIS.

– "Susceptible" показывает, как изменяется количество людей, которые могут быть инфицированы.

– "Infected" отображает количество людей, которые являются инфицированными и могут передавать болезнь.

График позволяет визуализировать динамику эпидемии, показывая, как число инфицированных и восприимчивых меняется в течение времени в моделируемой популяции.


5. Модель случайного блуждания – это абстрактная математическая модель, основанная на идее случайного перемещения индивидов и их контактах друг с другом. Эта модель предполагает, что каждый индивид перемещается в пространстве случайным образом, не зависящим от действий других людей, и встречается с другими индивидами случайным образом. Таким образом, модель отражает основные характеристики движения и контактов в реальных социальных сетях, что делает ее полезной для изучения распространения инфекций.

В рамках модели случайного блуждания каждый индивид представляется точкой или агентом в пространстве, который в каждый момент времени принимает случайное направление и перемещается на некоторое расстояние. Встречи между индивидами могут быть случайными и происходить с некоторой заданной интенсивностью.

Одним из ключевых применений модели случайного блуждания является оценка вероятности распространения инфекции в зависимости от перемещения людей. Путем моделирования случайных перемещений и контактов между индивидами можно определить, как вероятность заражения зависит от различных факторов, таких как плотность населения, скорость перемещения и частота контактов.

Однако важно учитывать, что модель случайного блуждания представляет собой упрощенную абстракцию реальной динамики социальных сетей, и ее применение может иметь ограничения в точности прогнозирования реальных ситуаций. Тем не менее, благодаря своей простоте и интуитивной понятности, модель случайного блуждания остается полезным инструментом для анализа и прогнозирования распространения инфекций в различных контекстах.