Одна из ключевых особенностей SEIRS-модели – учет временного интервала между инфицированием и появлением симптомов заболевания. Этот интервал может варьироваться в зависимости от конкретного инфекционного заболевания и может быть важным фактором при прогнозировании распространения болезни и планировании мер по ее контролю. В целом, SEIRS-модель предоставляет более реалистичное описание динамики распространения инфекционных заболеваний в сравнении с более простыми моделями, не учитывающими временные аспекты и динамику иммунитета в популяции.

Давайте представим, что у нас есть небольшая популяция, состоящая из 1000 человек, и они подвержены вспышке инфекционного заболевания, например, гриппа. Мы будем использовать SEIRS-модель для иллюстрации динамики этой вспышки.

Начальные условия: Первоначально, все 1000 человек в популяции считаются подверженными инфекции (Susceptible).

Ввод параметров: Мы определяем параметры модели, такие как коэффициент передачи инфекции, коэффициент инкубационного периода, коэффициент выздоровления и длительность временного иммунитета.

Экспозиция (Exposed): Некоторые из подверженных инфекции начинают инкубационный период, в течение которого они инфицированы, но еще не заразны для других. Допустим, в первый день 50 человек становятся экспонированными (Exposed).

Инфекция (Infectious): По прошествии определенного времени после инкубационного периода, экспонированные становятся инфекциозными и могут заразить других. Предположим, что каждый инфицированный в среднем заражает 1,5 человека.

Выздоровление (Recovered with temporary immunity): После некоторого времени инфицированные выздоравливают и приобретают временный иммунитет к болезни. Например, допустим, что средняя продолжительность болезни составляет 7 дней.

Потеря временного иммунитета: После определенного времени временный иммунитет уменьшается, и ранее выздоровевшие снова становятся подверженными инфекции.

Повторение цикла: Процесс повторяется, пока большинство популяции не будет либо заражено, либо приобретет иммунитет.

Модель позволяет нам проследить динамику распространения болезни во времени, учитывая временные аспекты, такие как инкубационный период и временной иммунитет, что делает ее более реалистичной и полезной для прогнозирования и управления эпидемиологической ситуацией.

Рассмотрим пример простой реализации SEIRS-модели на языке Python с использованием библиотеки `numpy` для вычислений и `matplotlib` для визуализации:

```python

import numpy as np

import matplotlib.pyplot as plt

def seirs_model(beta, sigma, gamma, delta, susceptible, exposed, infectious, recovered, days):

N = susceptible + exposed + infectious + recovered

S = [susceptible]

E = [exposed]

I = [infectious]

R = [recovered]

for _ in range(days):

new_exposed = beta * S[-1] * I[-1] / N

new_infectious = sigma * E[-1]

new_recovered = gamma * I[-1]

new_susceptible = delta * R[-1]

susceptible -= new_exposed

exposed += new_exposed – new_infectious

infectious += new_infectious – new_recovered

recovered += new_recovered – new_susceptible

S.append(susceptible)

E.append(exposed)

I.append(infectious)

R.append(recovered)

return S, E, I, R

# Параметры модели

beta = 0.3 # Скорость инфекции

sigma = 0.2 # Скорость инкубационного периода

gamma = 0.1 # Скорость выздоровления

delta = 0.05 # Скорость временного иммунитета

susceptible = 990

exposed = 10

infectious = 0

recovered = 0

days = 160

# Запуск модели

S, E, I, R = seirs_model(beta, sigma, gamma, delta, susceptible, exposed, infectious, recovered, days)