Кроме того, специализация студента также может оказать влияние на формирование предпринимательских намерений и готовность перейти к их реализации [Kolvereid, Моеп, 1997]. Таким образом, в модель введена бинарная переменная, отражающая вовлеченность в образовательную программу по предпринимательству.
Еще одним важным фактором можно считать уверенность в собственных знаниях и навыках, необходимых для создания и развития бизнеса [Fernandez-Perez et al., 2015; Liñán, 2008]. Данная переменная была измерена по 7-балльной шкале, адаптированной из нескольких источников [Zhao et al., 2005; Chen et ah, 1998; George, Zhou, 2001; Liñán, 2008; DeNoble, Jung, Ehrlich, 1999; Kickul et al., 2009]. Показатель альфа Кронбаха по ней составил 0,912.
Список подобных навыков и умений включал в себя способности выявлять новые возможности для бизнеса, создавать новые продукты и услуги, применять на деле собственную креативность, управлять инновациями внутри фирмы, быть лидером и «мастером общения», выстраивать профессиональную сеть, коммерциализировать новую идею или разработку, успешно управлять бизнесом. Данная переменная вошла в модель в виде среднего значения по полученным ответам. Также для учета возможных межстрановых различий в модель были включены 34 бинарные переменные, отражающие страны нахождения университетов.
Описательная статистика переменных и корреляционная матрица приведены в табл. 1.5 и 1.6.
Таблица 1.5
Описательная статистика переменных
Примечание: IV = 70 164.
Таблица 1.6
Корреляционная матрица
Примечание: N = 70 164; ***р < 0,001; **р < 0,01; * р < 0,05.
Наиболее высокую оценку получил коэффициент корреляции между переменными, отражающими воспринимаемый поведенческий контроль и уверенность студента в собственных знаниях и навыках г, равной 0,593, что предполагает только 35% общей вариации. Такой результат свидетельствует об отсутствии мультиколлинеарности в модели.
В целях оценки качества модели измерения проводился подтверждающий факторный анализ. Для оценки валидности «схождения» было использовано два базовых теста [Hair et al., 2010]. Во-первых, для всех латентных переменных было подтверждено, что все факторные нагрузки значимы на уровне 0,05. Во-вторых, все значения показателей композитной надежности, а также значения коэффициента альфа Кронбаха оказались выше уровня 0,7. Указанные обстоятельства свидетельствуют о достаточной валидности «схождения» полученных оценок рассматриваемых теоретических конструктов.
Проверка на дискриминантную валидность осуществлялась при помощи трех базовых тестов. В первую очередь были проанализированы оценки коэффициентов корреляции между всеми рассматриваемыми конструктами (табл. 1.6). Достаточный уровень дискриминантной валидности достигается в том случае, если все оценки коэффициентов корреляции значимо отличаются от 1 [Bagozzi, Yi, 1988]. Анализ оценок коэффициентов корреляции с применением статистического бутстрэпа с генерацией 1 тыс. выборок подтвердил выполнение этого условия.
Согласно второму критерию, дискриминантная валидность достигается, если квадратный корень показателя средней объясненной дисперсии для латентных переменных превышает оценку коэффициента корреляции между ними [Fornell, Larcker, 1981]. Данный критерий был выдержан для всех пар латентных переменных, использованных в модели. Помимо этого, был проведен тест с использованием критерия хи-квадрат: осуществлялось сравнение двух моделей измерения, в одной из которых корреляция между двумя составными конструктами не фиксировалась, а в другой – приравнивалась единице. Результаты оценки показали, что все пары конструктов имели статистически значимые различия на уровне