model.add(layers.LSTM(50, return_sequences=False))
model.add(layers.Dense(25))
model.add(layers.Dense(1))
# Шаг 4: Компиляция и обучение модели
model.compile(optimizer='adam', loss='mean_squared_error')
history = model.fit(X_train, y_train, batch_size=32, epochs=10,
validation_data=(X_test, y_test))
# Шаг 5: Оценка модели
predictions = model.predict(X_test)
predictions = scaler.inverse_transform(predictions)
# Визуализация результатов
plt.figure(figsize=(10, 6))
plt.plot(data.index[:len(data) – len(y_test)], scaler.inverse_transform(scaled_prices[:len(scaled_prices) – len(y_test)]), color='blue', label='Исторические данные')
plt.plot(data.index[len(data) – len(y_test):], scaler.inverse_transform(scaled_prices[len(scaled_prices) – len(y_test):]), color='orange', label='Истинные значения')
plt.plot(data.index[len(data) – len(y_test):], predictions, color='red', label='Прогнозы')
plt.xlabel('Дата')
plt.ylabel('Цена акции')
plt.legend()
plt.show()
```
Пояснение:
1. Импорт библиотек: Импортируются необходимые библиотеки, включая TensorFlow, Keras, pandas и matplotlib.
2. Подготовка данных: Загружаются данные о ценах акций из CSV файла и нормализуются с помощью MinMaxScaler. Создаются последовательности для обучения модели.
3. Построение модели RNN: Модель строится с использованием двух LSTM слоев. Первый слой LSTM возвращает последовательность, которая передается следующему слою. Второй слой LSTM возвращает конечный выход, который подается на полносвязные слои для получения прогноза.
4. Компиляция и обучение модели: Модель компилируется с использованием оптимизатора Adam и функции потерь mean_squared_error. Затем модель обучается на обучающей выборке.
5. Оценка и тестирование модели: Прогнозы модели сравниваются с реальными данными, и результаты визуализируются с помощью графика.
Этот подход может быть расширен и улучшен, например, путем настройки гиперпараметров модели или добавления дополнительных слоев для повышения точности прогнозов.
Построение модели RNN
Использование двух LSTM слоев
Для анализа временных рядов и прогнозирования цен на акции мы будем использовать два слоя LSTM. LSTM (Long Short-Term Memory) слои являются разновидностью рекуррентных нейронных сетей, специально разработанных для запоминания долгосрочных зависимостей в последовательных данных. В отличие от обычных RNN, которые могут страдать от проблем затухающих градиентов, LSTM могут эффективно обучаться на долгосрочных зависимостях.
Первый слой LSTM
Первый слой LSTM принимает последовательность данных на вход и возвращает последовательность, которая будет передана следующему слою. Возвращение последовательности (return_sequences=True) необходимо, чтобы каждый временной шаг предыдущего слоя был передан на вход следующего слоя LSTM. Это позволяет следующему слою LSTM дополнительно обрабатывать временные зависимости.
```python
model.add(layers.LSTM(50, return_sequences=True, input_shape=(sequence_length, 1)))
```
– 50 нейронов: Это количество нейронов в первом слое LSTM. Число нейронов определяет способность сети к обучению сложным паттернам.
–return_sequences=True: Указывает, что слой должен возвращать полную последовательность выходов для каждого временного шага, а не только последний выход.
– input_shape=(sequence_length, 1): Определяет форму входных данных, где `sequence_length` – это длина последовательности (например, 60 дней), а `1` – это количество признаков (в данном случае, только одно значение цены закрытия).
Второй слой LSTM
Второй слой LSTM принимает последовательность от первого слоя и возвращает конечный выход для всей последовательности. Здесь параметр `return_sequences` установлен в `False`, что означает, что слой будет возвращать только последний выходной элемент последовательности.