model = models.Sequential()

model.add(layers.Embedding(input_dim=10000, output_dim=128, input_length=maxlen))

model.add(layers.LSTM(128, return_sequences=True))

model.add(layers.LSTM(128, return_sequences=False))

model.add(layers.Dense(1, activation='sigmoid'))

# Шаг 4: Компиляция и обучение модели

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

history = model.fit(X_train, y_train, epochs=10, batch_size=32,

validation_data=(X_test, y_test))

# Шаг 5: Оценка модели

loss, accuracy = model.evaluate(X_test, y_test, verbose=2)

print(f'\nТочность на тестовых данных: {accuracy}')

# Визуализация процесса обучения

plt.plot(history.history['accuracy'], label='Точность на обучающем наборе')

plt.plot(history.history['val_accuracy'], label='Точность на валидационном наборе')

plt.xlabel('Эпоха')

plt.ylabel('Точность')

plt.legend(loc='lower right')

plt.show()

```

Пояснение:

1. Импорт библиотек: Импортируются необходимые библиотеки TensorFlow, Keras, pandas, matplotlib и другие.

2. Подготовка данных: Загрузка данных из CSV файла, содержащего тексты и метки настроений. Тексты токенизируются с использованием `Tokenizer`, и последовательности приводятся к одинаковой длине с помощью `pad_sequences`.

3. Построение модели LSTM: Модель строится с использованием слоя `Embedding` для преобразования токенов в плотные векторы, двух слоев LSTM для обработки последовательностей и одного полносвязного слоя для выдачи прогноза.

– Слой Embedding:

```python

model.add(layers.Embedding(input_dim=10000, output_dim=128, input_length=maxlen))

```

Этот слой преобразует входные токены в плотные векторы размерности 128.

– Первый слой LSTM:

```python

model.add(layers.LSTM(128, return_sequences=True))

```

Первый слой LSTM возвращает полную последовательность выходов, которая передается следующему слою LSTM.

– Второй слой LSTM:

```python

model.add(layers.LSTM(128, return_sequences=False))

```

Второй слой LSTM возвращает только последний выходной элемент.

– Выходной слой:

```python

model.add(layers.Dense(1, activation='sigmoid'))

```

Выходной слой с сигмоидной активацией для бинарной классификации настроений (позитивное или негативное).

4. Компиляция и обучение модели: Модель компилируется с использованием оптимизатора Adam и функции потерь binary_crossentropy. Затем модель обучается на обучающей выборке.

5. Оценка и тестирование модели: Оценивается точность модели на тестовой выборке и визуализируется процесс обучения с помощью графика.

Этот пример демонстрирует, как создать и обучить модель LSTM для анализа настроений в текстах. Модель включает слои embedding для преобразования текстовых данных в числовые векторы, два слоя LSTM для извлечения временных зависимостей и полносвязный слой для классификации. Эта архитектура позволяет эффективно анализировать тексты и предсказывать настроения на основе данных.

7. Создание простой GAN для генерации изображений

– Задача: Генерация рукописных цифр (набор MNIST).

Для создания простой генеративно-состязательной сети (GAN) для генерации рукописных цифр из набора данных MNIST можно использовать TensorFlow и Keras. В этом примере мы рассмотрим, как создать и обучить GAN для генерации изображений цифр.

Шаги:

1. Импорт библиотек и модулей.

2. Подготовка данных.

3. Построение генератора.

4. Построение дискриминатора.

5. Построение GAN.

6. Обучение GAN.

7. Генерация изображений.

Пример кода:

```python

import tensorflow as tf

from tensorflow.keras import layers, models

import numpy as np

import matplotlib.pyplot as plt

# Шаг 1: Импорт библиотек