Приятно сознавать себя умнее древнегреческого философа. Но Зенон, безусловно, понимал: реальный человек, если ему нужно догнать черепаху, побежит быстрее, чем она ползёт, и не станет каждый раз намечать себе цель там, где недавно находилась черепаха.

Из Интернета я узнал, что для решения проблем, поставленных в апориях Зенона, некоторые авторы привлекают квантовую механику. Они считают рассуждения Зенона верными, ибо бесконечное деление времени и пространства невозможно из-за соотношения неопределённости, согласно которому есть «неделимая» доля энергии – квант. (Остаётся неопределённым вопрос о том, существует ли минимальный квант пространства и времени.)


Ахиллес и черепаха


Остаётся только удивляться наивности таких авторов (Поль Леви, наверное, выразился бы в данном случае грубей). Хотя не исключено, что у них тонкий квантовый юмор.

Зенон предложил именно апории, которые заводят мысль в тупик и не могут иметь рационального решения. Они призваны показать, помимо всего прочего, трудности познания реального мира посредством математических упражнений.

По словам Бертрана Рассела: «Анализу апорий Зенона посвящена колоссальная литература; особенно большое внимание им уделялось в последние сто лет, когда математики стали усматривать в них предвосхищение парадоксов современной теории множеств».

На практике Ахиллес при желании перегонит черепаху, которая находится в пределах досягаемости. Но при некоторых условиях ему это не удастся. Почему?

Ответ прост: Ахиллес поставлен в такие условия, при которых он не догонит черепаху. Ему предложено постоянно замедлять своё движение, а с уменьшением расстояния становиться всё тоньше и меньше, до ничтожных размеров. Так получается, если отрешиться от математических абстракций и представить себе реальную картину бега.

Чтобы показать важность корректной постановки задачи, можно предложить апорию «Ахиллес и Гермес».

Есть аксиома: расстояние между двумя неподвижными телами остаётся неизменным. Немного изменим её: тела неподвижны, если расстояние между ними остаётся постоянным.

Итак, новая ситуация. Ахиллесу предложили догнать черепаху, которая находится в тысяче шагов от него. Когда он добежал до того места, где была черепаха, она оказалась в той же тысяче шагов от него. Это Гермес, бог торговли, воровства и хитрости, переносил её с той же скоростью, с которой бежал быстроногий Ахиллес. Так продолжалось впредь: как ни старался Ахиллес, расстояние между ним и черепахой оставалось неизменным.

В таком случае, если исходить из принципа, который взят за основу, он и она оставались неподвижными. Ведь расстояние между ними не менялось. Выходит, нет разницы – неподвижны два тела или движутся в одном направлении с одинаковой скоростью.

Вот и вспомнишь: «Движенья нет, сказал мудрец брадатый…»

Правда, во время бега Ахиллес тратил значительно больше энергии, чем в покое; значит, было движение. Но ведь есть бег на месте…

Общий вывод прост: наш исходный посыл и наши условия мысленного опыта были некорректны. Неверная постановка проблемы заводит мысль в тупик, исключает рациональное решение и вступает в противоречие с опытом и здравым смыслом.

При рассуждениях о движении двух тел принципиальное значение имеет взятая точка отсчёта и метод фиксации перемещений. Например, следствием теории относительности считается парадокс близнецов. Один близнец улетает с Земли, достигает близко к световой скорости, а через некоторое время возвращается на родную планету. Согласно теории, он испытает замедление времени и вернётся более молодым, чем его брат.