Рис. 12 Вычисление скорости ядра, которое должно вечно кружиться около Земли
Снаряд, выброшенный пушкой из точки А по касательной, спустя секунду был бы, скажем, в точке В, – если бы не действие земного притяжения. Тяжесть меняет дело, и под ее влиянием снаряд через секунду окажется не в В, а ниже настолько, насколько всякое свободное тело опускается в первую секунду своего падения, т. е. на 5 м. Если, опустившись на эти 5 м, снаряд окажется над уровнем Земли ровно настолько же, насколько и в точке А, то значит, он летит параллельно земной поверхности, не приближаясь и не удаляясь от нее. Это и есть то, чего мы желаем добиться. Остается вычислить лишь длину AB, т. е. путь снаряда в одну секунду; результат и даст искомую секундную скорость ядра. Вычисление может быть выполнено по теореме Пифагора. В прямоугольном треугольнике АВО линия АО есть земной радиус, равный 6 371 000 м. Отрезок ОС = АО, отрезок ВС = 5 м; следовательно, OB = 6 371 005 м. По теореме Пифагора имеем:
6 371 005>2 = 6 371 000>2 + AB>2.
Отсюда уже легко вычислить искомую величину секундной скорости:
AB = 7900 м/с.
Итак, если бы пушка могла сообщить снаряду начальную скорость в 8 км/сек, то при отсутствии сопротивления атмосферы такой снаряд никогда не упал бы на Землю, а вечно вращался бы вокруг нее[14]. Пролетая в каждую секунду 8 км, он в течение 1 ч 23 мин успел бы описать полный круг и возвратился бы в точку исхода, чтобы начать новый круг, и т. д. Это был бы настоящий спутник земного шара, наша вторая Луна, более близкая и более быстрая, чем первая. Ее «месяц» равнялся бы всего только 1 ч 23 мин. Она мчалась бы в 17 раз быстрее, чем любая точка земного экватора, и если вы вспомните то, что сказано было выше об ослаблении тяжести вследствие вращения Земли (см. стр. 28–30), то вам станет еще яснее, почему ядро наше не падает на Землю. Мы знаем, что если бы земной шар вращался в 17 раз быстрее, то тела на экваторе целиком потеряли бы свой вес; скорость же нашего снаряда – 8 км/с – как раз в 17 раз больше скорости точек земного экватора.
Рис. 13. Как направлена сила тяжести, действующая на снаряд в воображаемом опыте Ньютона
Человеческой гордости должно льстить сознание, что мы имеем возможность – правда, лишь теоретическую – подарить Земле маленького, но все же настоящего спутника. Пылкий герой Жюль-Вернова «Путешествия на Луну», артиллерист Мастон, не без основания воскликнул, что в создании пушечного ядра человек проявил высшую степень могущества: «Создав пушечное ядро, человек сотворил подобие несущихся в пространстве небесных светил, которые в сущности те же ядра». Еще справедливее это сравнение с небесными светилами для того снаряда, который отсылается в мировое пространство. Это новое небесное тело, при своей миниатюрности, будет не хуже всех остальных подчиняться трем законам Кеплера, управляющим небесными движениями. Нужды нет, что пушечный снаряд – предмет «земной»: приобретя космическую скорость, он превращается в настоящее небесное тело.
Рис. 14. Судьба ядер, выброшенных пушкой с весьма большими скоростями
Итак, сообщив пушечному снаряду начальную скорость 8 км/с, мы превращаем его в маленькое небесное тело, которое, победив земное притяжение, уже не возвращается на Землю. Что же будет, если сообщить снаряду еще большую начальную скорость? В небесной механике доказывается, что при начальной секундной скорости в 8, 9, 10 км/с, снаряд, выброшенный пушкой, будет описывать около Земли не окружность, а эллипс – тем более вытянутый, чем значительнее начальная скорость; центр Земли занимает один из фокусов этого эллипса.