Ро; такое количество почти не видно невооруженным глазом. Далее полоний нужно отделить от большой массы висмута; это можно сделать отгонкой в ваку уме при нагревании – как это делала Мария Кюри. Чистый полоний получают гальваническим методом, осаждая его из раствора в азотной кислоте на катоде. Можно представить, насколько трудно получить граммовые и даже миллиграммовые количества полония! Первый образец чистого полония-210 был получен только в марте 1944 г. в США. В СССР под научным руководством З. В. Ершовой было создано экологически чистое производство полония, который использовали в качестве источника энергии для луноходов. Для получения более долгоживущих изотопов >208Ро и >209Ро можно использовать ядерные реакции >207Pb + α → >208Po + 3n, >209Bi + + p>208Po + 2n, >209Bi + d>208Po + 3n, >209Bi + p>209Po + n, >209Bi + d>209Po + 2n, где d – ускоренные дейтроны (ядра дейтерия), облучение проводят в циклотроне. Все эти методы позволяют получить лишь ничтожные количества >208Ро и >209Ро, достаточные только для изучения их радиоактивных свойств.

Свойства полония

Полоний – один из самых опасных радиоэлементов. Эксперименты с ним требуют соблюдения строжайших мер безопасности. Исследователь должен быть надежно защищен от попадания даже малейших следов этого элемента в дыхательные пути, в пищеварительный тракт. Недопустим также контакт полония или его химических соединений с кожей. Несмотря на все эти трудности, были изучены как физические, так и химические свойства полония и его соединений. Полоний – мягкий серебристо-серый металл, похожий на свинец, с температурой плавления 254 °С. Это тяжелый металл, его плотность близка к 9,5 г/см>3 – почти как у серебра. Плотность полония подсчитана не непосредственным измерением, а путем рентгенографического определения параметров кристаллической решетки. Это – следствие высокой радиоактивности, которая не позволяет получать значительные количества компактного металла. Известно, что препараты радия (t>1/2 = 1600 лет) у Марии Кюри светились в темноте. Что уж говорить о полонии-210! Он не только светится, но и очень сильно нагревается за счет поглощения собственных α-частиц, несущих огромную энергию. Ведь при равных массах полоний в тысячи раз активнее радия. Кусочек полония размером с наперсток выделяет около 2 кВт тепловой энергии.

Если получить весомые количества полония, от них необходимо непрерывно отводить теплоту. Если этого не делать, металлический полоний почти сразу расплавится, а затем испарится. Но даже если от образца эффективно отводить теплоту, с его поверхности будут выделяться микрочастицы металла. Поэтому металлический полоний способен легко образовывать в воздухе мельчайшие частицы аэрозоля, что резко увеличивает опасность работы с ним. Этот эффект типичен для сильно радиоактивных металлов и объясняется быстрым накоплением на них отрицательных зарядов при вылете в воздух положительно заряженных α-частиц. Кроме того, когда атомы полония оседают на мельчайших частицах пыли, то в результате механической отдачи при вылете α-частиц такие пылинки совершают «прыжки» и потому способны отрываться от поверхностей, на которые они осели.

Полоний кипит при сравнительно невысокой температуре – 949 °С, что определяет его летучесть (для сравнения: температура кипения свинца – 1710 °С, олова – 2360 °С). В парах полоний находится в виде молекул Ро>2. Летучесть полония облегчает его очистку, а также перемещение микроколичеств металла из одной части аппаратуры в другую путем их нагрева и охлаждения. В то же время летучесть затрудняет работу с ощутимыми количествами полония. По химическим свойствам полоний несколько похож на висмут, а также на свой ближайший аналог – неметалл теллур и проявляет типичные для элемента VI группы степени окисления: –2, +2, +4, +6. На воздухе полоний медленно окисляется (быстро при нагревании) с образованием красного диоксида РоО