РЕШЕНИЕ

1м – величина сама по себе небольшая; но, вспоминая об огромном протяжении орбиты Земли, мы склонны думать, что эта незначительная прибавка расстояния должна дать весьма заметную прибавку длины, а следовательно, и продолжительности года.



Рис. 23. Насколько удлинилась бы земная орбита, если бы наша планета удалилась от Солнца еще на 1 м? (Решение задачи в тексте)


Однако, выполнив вычисление, мы получаем настолько ничтожный результат, что готовы заподозрить ошибку в выкладках. Удивляться незначительности разницы не приходится; она и должна быть весьма мала. Разность длины двух концентрических окружностей зависит не от величины радиусов этих окружностей, а только от разности этих радиусов. У двух окружностей, начерченных на полу комнаты, она совершенно та же, что и у окружностей космических размеров, если радиусы в обоих случаях разнятся на 1 м. В этом убеждает нас расчет. Если радиус земной орбиты (принимаемой за круг) равен R м, то длина ее равна 2πR. При удлинении радиуса на 1 м новая длина орбиты будет равна 2π(R + 1) = 2πR + 2π. Прибавка длины орбиты составляет, как видим, всего 2π, т. е. 6,28 м, и не зависит от величины радиуса.

Итак, путь Земли около Солнца при увеличении расстояния на 1 м удлинился бы всего на 6>1/>4 м. На длине года это почти не отразилось бы, так как Земля делает по орбите 30 000 м в секунду: год удлинился бы всего на 5000-ю долю секунды – величину, конечно, неощутимую.

С разных точек зрения

Роняя из рук вещь, вы видите ее падающей по отвесной линии, и вам странно думать, что кому-нибудь другому путь ее падения может представиться не прямой линией. А между тем именно так и произойдет для каждого наблюдателя, не участвующего вместе с нами в движении земного шара.

Попробуем мысленно взглянуть на падение тела глазами такого наблюдателя. На рис. 24 изображен тяжелый шар, свободно падающий с высоты 500 м. Падая, он, конечно, участвует одновременно во всех движениях земного шара. Этих привходящих и притом гораздо более быстрых движений падающего тела мы не замечаем потому только, что сами в них участвуем. Освободимся от участия в одном из движений нашей планеты, и мы увидим то же тело движущимся уже не отвесно вниз, а по совершенно иной линии.



Рис. 24. Для земного наблюдателя путь свободно падающего тела – прямая линия


Вообразим, например, что мы следим за падением тела не с земной поверхности, а с Луны. Луна сопутствует Земле в ее движении вокруг Солнца, но не разделяет вращательного ее движения вокруг оси. Поэтому, наблюдая с Луны за падением, мы увидели бы тело, совершающее два движения: одно – отвесно вниз и второе движение, прежде не замечавшееся, – по касательной к земной поверхности на восток. Оба одновременных движения, конечно, складываются по правилам механики, и так как одно из них (падение) неравномерное, а другое равномерное, то результирующее движение будет происходить по кривой линии. На рис. 25 изображена эта кривая: по такому пути двигалось бы падающее на Земле тело для достаточно зоркого наблюдателя, помещающегося на Луне.



Рис. 25. Тот же путь представляется лунному наблюдателю искривленным


Сделаем еще шаг: перенесемся мысленно на Солнце, захватив с собой сверхмощный телескоп, чтобы следить за падением на Землю тяжелого шара. Находясь на Солнце, мы не участвуем уже не только во вращении Земли вокруг оси, но и в ее обращении по орбите. Следовательно, с Солнца мы можем заметить три движения, совершаемые падающим телом одновременно (рис. 26):



Рис. 26. Тело, свободно падающее на Землю, движется одновременно в направлении касательной к тому круговому пути, который описывают точки земной поверхности вследствие вращения Земли.