Наконец, на третьем этапе начинается взаимодействие с развившейся до необходимого уровня теоретико-эмпирической наукой. Например, в строительство внедряются экспериментально подтвержденные модели сопротивления материалов. На этом этапе инженерия становится больше, чем сводом правил, и получает опору в науке и толчок к быстрому совершенствованию.

Представляется, что эта схема, описывающая, например, историческое взаимодействие физики с инженерией, хорошо применима и к взаимодействию теоретико-экспериментальной психологии с практикой. В этом контексте следует задержать внимание на процессах, разворачивающихся на третьем этапе, включающем, в свою очередь, ряд стадий. Представляется, что те отрасли психологической практики, об оторванности которых от теоретико-эмпирических исследований идет речь, находятся на переходе от второго этапа к третьему. Можно выделить два типа взаимодействия теоретико-экспериментальной науки и практики, которые мы в одной из предшествующих публикаций назвали взаимодействиями типа А и типа В (Журавлев, Ушаков, 2011б).

Взаимодействие типа А заключается в том, что модели явлений или процессов, проверенные в экспериментальных ситуациях, используются при проектировании и создании практически важных технологий или технических объектов. При этом экспериментальные ситуации, как правило, мало похожи на ситуации практического внедрения. Бросание камней с Пизанской башни, удар током по лапе павловской собаки или разгон частиц в коллайдере – примеры таких экспериментальных ситуаций, которые, вопреки У. Найссеру, отнюдь не обязаны быть «экологически валидными». Таким образом, при взаимодействии типа А модели естественных явлений, пройдя через процессы инженерного конструирования, приводят к созданию практически полезных устройств и технологий.

Взаимодействие типа В состоит в систематическом сборе и обработке сведений о результатах практического применения устройств или технологий. Эти сведения позволяют оценить эффективность искусственных разработок, однако, как правило, добавляют мало информации о протекании естественных процессов. Если ракета-носитель разваливается, не выведя спутник на орбиту, то под вопрос ставятся не законы Ньютона, а конструкция ракеты или ее отдельных узлов и, возможно, компетентность конструкторов.

Далее мы рассмотрим особенности протекания А- и В-взаимодействия.

А-взаимодействие

Собственно А-взаимодействие выявляет основные возможности теоретико-экспериментальной науки для практики. Наука поставляет инженерии модели процессов и структур. Инженерия, в свою очередь, отбирает те процессы или структуры, которые по своим результатам или свойствам соответствуют целям, стоящим перед инженерными устройствами, и пытается создать условия, чтобы запустить на практике нужный процесс или сконструировать нужную структуру.

Например, теоретико-экспериментальная наука разрабатывает модель организации атома, из которой следует существование огромных энергий, в нем заключенных. Но создание технологий высвобождения этих энергий вызвало необходимость гигантских проектов, которые включали не только научную, но и собственно инженерную составляющую. Таким образом, новые представления о мире, создаваемые фундаментальной наукой, часто должны пройти достаточно длительный период в развитии, чтобы оказать существенное влияние на инженерию.

В то же время возможно и существенное развитие конструкций в рамках одних и тех же моделей естественных процессов без получения дополнительной подпитки из теоретико-экспериментальной науки. У инженерии есть свои внутренние возможности развития без поддержки науки. Вспомним, например, такое знаменитое изобретение, как игла Зингера. Какие разработки теоретико-экспериментальной науки легли в его основу? Очевидно, это изобретение было чисто инженерным, без подпитки со стороны научных знаний.