С точки зрения рассмотренного в предыдущей главе корпускулярно-волнового дуализма все во Вселенной, включая свет и тяготение, можно описать при помощи частиц. У этих частиц есть свойство, называемое спином. Его можно представить себе, сравнив частицы с маленькими волчками, вращающимися вокруг своей оси. Однако такое сравнение может оказаться не очень удачным, потому что согласно квантовой механике у частиц нет четко определенной оси. В действительности спин свидетельствует о том, как частица выглядит с разных сторон. Частица с нулевым спином похожа на точку: она выглядит одинаково, независимо от того, с какой стороны на нее смотреть (рис. 5.1i). Частица со спином 1 напоминает стрелку: она выглядит по-разному с разных направлений (рис. 5.1ii). Чтобы снова увидеть ее такой же, частицу надо повернуть на 360 градусов. Частица со спином 2 похожа на двустороннюю стрелку (рис. 5.1iii): она будет выглядеть так же, если повернуть ее на 180 градусов. Аналогично частицы с бо́льшими спинами выглядят так же, если повернуть их на меньшую долю полного оборота. Все это выглядит довольно просто, но у некоторых частиц есть замечательное свойство: они не выглядят такими же, если сделают полный круг, – их надо повернуть на два оборота! Про такие частицы говорят, что их спин равен >1/>2.


Рис. 5.1


Все известные элементарные частицы во Вселенной можно подразделить на две группы: частицы со спином >1/>2, из которых состоит вещество во Вселенной, и частицы со спином 0, 1 или 2, которые, как мы увидим, порождают силы, действующие между частицами вещества. Частицы вещества подчиняются так называемому принципу запрета Паули. Этот принцип был открыт в 1925 году австрийским физиком Вольфгангом Паули, в 1945 году получившим Нобелевскую премию за это достижение. Он был типичным физиком-теоретиком: о нем говорили, что одно его присутствие в городе плохо влияло на ход экспериментов! Принцип запрета Паули гласит, что две одинаковые частицы не могут пребывать в одном и том же состоянии, то есть в пределах, определяемых принципом неопределенности, они не могут одновременно находиться в одном и том же положении и иметь при этом одинаковые скорости. Принцип запрета имеет чрезвычайно важное значение, поскольку объясняет, почему частицы вещества не коллапсируют в сверхплотное состояние под действием сил, создаваемых частицами со спином 0, 1 или 2: когда частицы вещества оказываются очень близко друг к другу (то есть имеют очень близкие положения), они должны иметь очень разные скорости и, следовательно, не могут долго находиться в одном и том же положении. Если бы в мире не действовал принцип запрета, кварки бы не образовали отдельные друг от друга протоны и нейтроны, а последние вместе с электронами не могли бы образовывать отдельные друг от друга атомы. Они бы элементарно сколлапсировали, образовав более или менее однородный и густой «суп».

Верное понимание электрона и других частиц со спином >1/>2 пришло только в 1928 году – с теорией, предложенной Полем Дираком, который впоследствии был избран на должность Лукасовского профессора математики в Кембридже (эту должность в свое время занимал Ньютон, а сейчас ее занимаю я). Это была первая теория, совместимая как с квантовой механикой, так и со специальной теорией относительности. Она дает математическое объяснение электрону со спином >1/>2, то есть толкует, почему электрон не выглядит тождественно, если повернуть его на один полный оборот, и почему нужно повернуть его на целых два оборота. Теория Дирака также предсказывала, что у электрона должна быть частица-двойник – антиэлектрон, или позитрон. Открытие позитрона в 1932 году подтвердило теорию Дирака и принесло ему Нобелевскую премию по физике 1933 года. Теперь мы знаем, что у каждой частицы есть своя античастица, и при взаимодействии они могут аннигилировать (взаимно уничтожиться). (Античастицами «переносчиков» взаимодействий являются сами эти частицы.) Из античастиц могут состоять целые антимиры и антилюди. Но если вы встретите свою «антисущность», ни в коем случае не пытайтесь пожать друг другу руки! Вы оба исчезнете в сильной вспышке света. Вопрос о том, почему вокруг нас намного больше частиц, чем античастиц, чрезвычайно важен, и я вернусь к нему позже в этой главе.