Максимальная энергия хорошо изученных солнечных вспышек составляет более 10>32 эрг (10>25 Дж). Основная классификация вспышек по энергетике основана на потоке рентгеновского излучения от них и включает пять групп: А (самые слабые), затем В, С, М и Х (самые мощные). Внутри группы мощность обозначается цифрами. Так, С1 в 10 раз мощнее В1, а Х4 в два раза мощнее вспышки Х2. При этом мощность коронального выброса, а также светимость в видимом диапазоне лишь в среднем коррелируют с параметрами рентгеновского излучения. Самые мощные из наблюдавшихся за последние десятилетия (когда стали доступны прямые рентгеновские наблюдения и другие способы детального изучения вспышек) имеют обозначения > Х20. Например, вспышка, которой приписывают класс Х28, наблюдалась 4 ноября 2003 г., а событие Каррингтона предположительно можно оценить как вспышку класса X40–X45, хотя, конечно, точно восстановить энергетику этого события невозможно по причине отсутствия достоверных данных (рентгеновских наблюдений в то время не существовало).

Максимальная энергия известных солнечных вспышек составляет чуть более 1032 эрг.

Типичная длительность основной фазы вспышки составляет несколько минут. В это время наблюдается излучение в жестком рентгеновском диапазоне (тормозное излучение), а также в радиодиапазоне (гиросинхротронное излучение). Примерно в это же время происходит и мощная вспышка в видимом диапазоне (подобная той, что наблюдали Каррингтон и Ходжсон). Вещество начинает двигаться наружу, попадая в солнечную корону. Там оно постепенно (на протяжении десятков минут) остывает, излучая в мягком рентгеновском, жестком ультрафиолетовом и, наконец, видимом диапазонах. В случае мощных вспышек заброс вещества в верхние слои приводит к появлению коронального выброса. Чем мощнее вспышка, тем больше вероятность того, что она сопровождается выбросом.

Слабых вспышек, разумеется, больше, чем мощных. Однако их число с уменьшением энергии вспышки растет не очень быстро (дифференциальный рост числа вспышек в малом интервале энергий происходит медленнее, чем спадает квадрат энергии: dN/dE ~ E>-α, где α < 2). Эта зависимость, построенная по данным наблюдений, тянется от энергий, превосходящих 10>32 эрг, до энергии менее чем 1024 эрг. В результате оказывается, что в мощных вспышках суммарно выделяется немного больше энергии, чем в слабых. В частности, это означает, что слабые вспышки не могут являться эффективным механизмом нагрева солнечной короны.

Вспышки чаще происходят вблизи максимумов солнечной активности, поскольку места локализации этих событий связаны с активными областями на Солнце (крайне редко вспышки классов М и Х происходят в местах, где нет крупных пятен). Нередко мощные вспышки связаны с эруптивными протуберанцами, которые приводят к выбросам вещества. Однако зависимость числа вспышек от уровня активности слабее, чем для числа пятен. В минимумах количество вспышек падает не столь сильно, как количество активных областей.

Вспышки коррелируют с другими типами солнечной активности.

Мощные вспышки порождают динамические процессы в солнечной атмосфере. Одним из наиболее впечатляющих феноменов являются так называемые мортоновские волны, получившее свое имя в честь Гейла Мортона (Gail Moreton), который вместе с коллегами открыл и изучил их в конце 1950-х гг. Это явление получило также колоритное название «солнечные цунами»: в результате вспышки крупномасштабная ударная волна в короне порождает движение в более низких слоях. Мортоновские волны наиболее хорошо наблюдаются в хромосфере в спектральных линиях (например, в Hα), их скорость составляет около 1000 км/с. Вспышка также вызывает сейсмические волны во внешних слоях Солнца.