Глава 4. Обмен газов в тканях
Наименьшая концентрация кислорода в тех внутренних средах организма, где его потребление максимально, – в митохондриях клеток, где кислород используется для процессов биологического окисления. Молекулы кислорода, освобождающиеся при прохождении по кровеносным капиллярам в результате диссоциации оксигемоглобина, движутся в направлении более низких величин концентрации кислорода. Концентрация кислорода в тканях зависит от многих факторов:
• скорости тока крови;
• просвета капилляров и расстояния между ними;
• расположения клеток по отношению к капиллярам;
• интенсивности окислительных процессов и т. д.
В тканевой жидкости, около капилляров, концентрация кислорода значительно ниже (20–40 мм рт. ст.), чем в крови. Особенно низка она в участках тканей, равноудаленных от соседних капилляров. При большой интенсивности окислительных процессов концентрация молекулярного кислорода в клетках может приближаться к нулю. Увеличение скорости кровотока резко повышает концентрацию кислорода в тканях. Например, увеличение скорости тока крови вдвое может повысить уровень содержания кислорода в нервной клетке на 10 мм рт. ст. Увеличению снабжения кислородом при интенсификации физиологических процессов способствует раскрытие резервных капилляров – тех капилляров, которые не используются при обычном режиме «работы» организма, наиболее масштабно этот процесс протекает в мышцах. Из всего вышесказанного можно сделать еще один – побочный, но очень важный практический вывод: физическая работа за счет открытия резервных капилляров способствует «вымыванию» шлаков и улучшению газообмена в тканях, именно физическая работа является наилучшим физиологическим (т. е. – естественным) стимулятором этих процессов.
>Рис. 9. Тканевое дыхание
Наибольшая концентрация углекислого газа (до 60 мм рт. ст.) отмечается в клетках в результате образования этого газа в митохондриях. В тканевой жидкости концентрация углекислого газа изменчива (в среднем 46 мм рт. ст.), а в артериальной крови составляет 40 мм рт. ст. Углекислый газ из клеток и межклеточной жидкости диффундирует по направлению снижения концентрации в кровеносные капилляры и транспортируется кровью к легким. Этот механизм мы разбирали в предыдущей главе.
Глава 5. Клеточное дыхание
Сложными, но верными в выбранном направлении тропами мы добрались до того момента, когда вам наконец станет ясно, для чего же столько хлопот – «тянуть» в глубь организма, к каждой его клеточке кислород, да еще и стараться, чтобы каждой клетке досталось, как при коммунизме, – не по труду, а по потребностям.
>Рис. 10. Митохондрия
Ни для кого не секрет, что наше тело состоит из множества живых клеток – непохожих по своему строению, но работающих с одной целью – обеспечить своим существованием жизнедеятельность цельного организма, являющегося материальной основой нашей Личности, который мы обычно называем телом. Однако, различаясь по своим функциям и строению, все клетки все же имеют общие черты – как люди, различающиеся как отдельные личности, но имеющие одинаковый набор внутренних органов (сердце, легкие, мозг и т. д.) и примерно одинаковый набор биологических потребностей (воздух, питание, тепло и т. д.). Эти закономерности в равной степени относятся как ко всему организму, так и к каждой его клетке, и в первую очередь любая клетка нашего тела нуждается в энергии. Эту энергию клетка получает путем окисления органических веществ, для процесса окисления необходим кислород – другими словами, клетка получает энергию в процессе