Как простейший пример возьмем такие группы точек, которые расположены на прямой линии; точки, так сказать, нанизаны на прямую. Тогда, чтобы определить положение точки на прямой по отношению к некоторой неизменной точке – началу, нужно дать число, выражающее расстояние этой точки от неподвижной в каких-нибудь определенных единицах длины, например в миллиметрах. Если мера длины дана и дано число, то этим точка, характеризуемая числом, вполне определена. Выбирая совокупности чисел по тому или другому общему правилу, мы станем последовательно получать группы точек, расположенные по тому или другому закону. Так, например, мы можем потребовать, чтобы были взяты все те точки, соответственные числа которых – координаты – суть все рациональные числа не меньшие нуля и не большие единицы. Это будет группа «рациональных точек» в отрезке 0–1.
В теории групп на каждом шагу встречаются случаи, где две существенно-различные группы, которые приходится трактовать при всевозможных рассуждениях как объекты весьма разнящиеся, не могут быть различаемы в созерцании. Возьмем, например, группу точек, определяемых всевозможными числами между 0 и 1, включая сюда 0 и 1; это будет так называемая замкнутая группа. Возьмем, далее, группу точек, определяемых всевозможными числами между 0 и 1, включая сюда 0, но не включая 1; такая группа носит название незамкнутой. Обе эти группы абсолютно-неразличимы в созерцании, «на глаз»; одна имеет вид, как другая; одна, по-видимому, тождественна с другой. Но, на самом деле, между ними есть очень важная разница, которая радикально различает свойства групп. Первая группа, замкнутая, имеет, так сказать, окончания; точки 0 и 1 являются для нее крайними точками, так что нет ни одной точки группы, которая лежала бы правее, чем точка 1, и нет такой, которая лежала бы левее точки 0. То же самое можно сказать и о левом конце второй группы, незамкнутой; но не так обстоит дело с правым концом этой группы; тут конца в собственном смысле нет; нет последней точки, крайней. Какую бы далеко стоящую точку мы ни взяли, непременно найдется другая, еще дальше ее стоящая; а последней все-таки нет. Мы можем как угодно близко подходить к точке 1, которая не относится к нашей незамкнутой группе, и все-таки никогда точки 1 достигнуть не сможем, потому что, если мы станем в точку 1, то выйдем из пределов группы, а если не станем еще в нее и будем слева от нее, то всегда имеем возможность подойти ближе. У замкнутой группы, так сказать, обтаял кончик, сточилась последняя точка, и получилась группа незамкнутая. Это изменение, невидимое и неощутимое, однако, произвело существенное изменение в свойствах, в структуре группы, и тот, кто занимался теорией групп, хорошо знает, как серьезны эти изменения структуры и как тщательно надо различать группу замкнутую от незамкнутой. У последней не хватает какого-то «чуть-чуть», с появлением которого она бы перешла в группу замкнутую. Но отсутствие этого «чуть-чуть» имеет для сущности группы, может быть, большее значение, чем в области эстетики то «чуть-чуть», с которого начинается искусство.