. Подобная симметрия, с шестью пятикратно симметричными осями – самая известная из запрещенных кристаллических симметрий. По удачному стечению обстоятельств, Дов Левайн (Технион, Хайфа, Израиль) и я разрабатывали гипотезу новой формы твердого вещества, которую назвали «квазикристаллы», сокращенно от «квазипериодические кристаллы». (Квазипериодическое расположение атомов может быть описано суммой колебательных функций, где частота имеет иррациональное выражение.) Нас вдохновила двумерная мозаика, придуманная сэром Роджером Пенроузом и известная как «мозаика Пенроуза», которая состоит из двух мозаик, объединенных в пятикратно симметричную структуру. Мы показали, что квазикристаллы способны существовать в трех измерениях и не подчиняются законам кристаллографии. Фактически они могут обладать любой симметрией, запрещенной для кристаллов. Более того, мы продемонстрировали, что дифракционные решетки, предсказанные для икосаэдрических квазикристаллов, соответствовали наблюдениям Шехтмана и его коллег.

Начиная с 1984 года, в лабораториях были синтезированы квазикристаллы с другими запрещенными типами симметрии. В 2011 году Дэн Шехтман получил Нобелевскую премию за экспериментальные достижения, которые изменили наши представления о возможных формах вещества. Позднее мои коллеги и я представили доказательства того, что квазикристаллы могли быть одними из первых минералов, образованных в Солнечной системе.

Кристаллография, с которой я познакомился в книге Вейля, предположительно была исчерпывающей и непреложной, но оказалась крайне неполной, упускающей из виду без преувеличения неисчислимое множество типов симметрии вещества. Наверное, из этого следует извлечь урок: хотя простота и элегантность – полезные критерии оценки теорий, иногда они могут ввести нас в заблуждение.

Простота

Фрэнк Вильчек

Физик-теоретик (Массачусетский технологический институт), лауреат Нобелевской премии по физике 2004 года; автор книги The Lightness of BeingЛегкость бытия»)

Мы все имеем интуитивное представление о том, что такое простота. В науке это понятие часто используется в качестве положительной оценки. Считается, что простые объяснения более естественны, продуманны и надежны, чем сложные. Мы избегаем блуждания вокруг да около, длинных списков исключений и особых случаев. Но можем ли мы сделать решительный шаг вперед, чтобы превратить наше интуитивное представление о простоте в точную научную концепцию? Существует ли простой ключ к простоте? Можно ли измерить или подсчитать простоту?

Когда я задумываюсь о серьезных философских проблемах, (а я делаю это чаще, чем нужно), моим любимым методом служит приведение вопроса в вид, понятный компьютеру. Как правило, это разрушительный способ: он заставляет выражать свои мысли проще, и когда туман рассеивается, от серьезной философской проблемы мало что остается. Однако в случае с определением сущности простоты метод оказался продуктивным, так как привел меня прямиком к простому и основательному положению математической теории информации – длине информации. В научной литературе это положение известно под разными наименованиями, включая «алгоритмическую энтропию» и «сложность Колмогорова – Смирнова – Хайтина». Естествен но, я выбрал самое простое.

Практически длина информации служит мерой сложности, но она подходит и для нашей задачи, потому что мы можем определить простоту как противоположность сложности или, в численном выражении, как отрицательную сложность. Чтобы получить у компьютера ответ, насколько что-то сложно, мы должны представить это «что-то» в доступном для компьютера виде – то есть в виде файла с данными, набора нулей и единиц. Едва ли это вынужденное искажение информации: мы знаем, что файлы с данными могут содержать, например, видеофильм, так что мы можем спросить, насколько просто его содержание. Так как наш фильм наверняка посвящен научным наблюдениям или исследованиям, мы можем поинтересоваться простотой научного объяснения.