# Оценка модели на тестовых данных
score = model.evaluate(X_test, y_test)
print(f'Test loss: {score[0]}')
print(f'Test accuracy: {score[1]}')
```
Пояснение
1. Загрузка данных MNIST:
Мы загружаем набор данных MNIST, который состоит из изображений рукописных цифр (28x28 пикселей).
2. Нормализация входных данных:
Мы нормализуем значения пикселей, деля их на 255, чтобы привести их в диапазон от 0 до 1.
3. Преобразование меток в one-hot encoding:
Мы преобразуем метки классов в формат one-hot encoding, что необходимо для обучения модели в задачах многоклассовой классификации.
4. Создание модели:
Мы создаем последовательную модель (Sequential) и добавляем слои:
– Первый слой преобразует входные изображения в одномерный вектор.
– Два полносвязных слоя с 512 нейронами каждый и функцией активации ReLU.
– Выходной слой с 10 нейронами и функцией активации softmax для предсказания вероятностей классов.
5. Компиляция модели: Мы компилируем модель, используя функцию потерь `categorical_crossentropy`, оптимизатор `adam` и метрику `accuracy`.
6. Обучение модели: Мы обучаем модель на тренировочных данных с размером батча 128 и числом эпох 10, используя 20% данных для валидации.
7. Оценка модели: Мы оцениваем модель на тестовых данных и выводим значения потерь и точности.
Этот пример демонстрирует, как функция активации ReLU используется в полносвязных слоях нейронной сети для эффективного обучения модели на задаче классификации изображений.
Sigmoid
Функция активации Sigmoid была одной из первых функций, широко используемых в нейронных сетях, особенно в ранних моделях искусственных нейронных сетей. Sigmoid преобразует любое входное значение в диапазон от 0 до 1, что делает ее особенно полезной для задач, где требуется интерпретация вывода как вероятности. Именно по этой причине Sigmoid часто используется в выходных слоях нейронных сетей для задач бинарной классификации, где выходная величина должна представлять вероятность принадлежности к одному из двух классов.
Одним из основных преимуществ Sigmoid является ее плавный градиент, что означает, что небольшие изменения входных значений приводят к небольшим изменениям в выходных значениях. Это позволяет нейронным сетям чувствительно реагировать на изменения входных данных и, в некоторой степени, помогает в стабильном обучении. Кроме того, функция Sigmoid является дифференцируемой, что важно для процесса обратного распространения ошибки, используемого для обучения нейронных сетей.
Однако у функции Sigmoid есть и существенные недостатки. Один из самых значительных – это проблема затухающих градиентов. Когда входные значения становятся очень большими по модулю, производная Sigmoid становится близкой к нулю, что замедляет или останавливает процесс обновления весов во время обучения. Это приводит к медленной сходимости или даже к стагнации обучения, особенно в глубоких сетях. В результате нейронные сети, использующие Sigmoid, могут потребовать значительно больше времени для обучения или вообще не достигать хороших результатов.
Еще одним недостатком Sigmoid является ее асимптотическое поведение: для очень больших положительных или отрицательных значений входа выход функции становится близким к 1 или 0 соответственно, но никогда не достигает этих значений. Это может привести к ситуации, когда нейроны находятся в насыщенной области, где они практически не обучаются. Это особенно проблематично для глубоких нейронных сетей, где многослойное применение Sigmoid может усугублять проблему затухающих градиентов.