Процесс нормализации включает вычисление среднего значения и дисперсии активаций в каждом мини-батче данных. Допустим, у нас есть мини-батч изображений размером 32x32x3 (32 пикселя в ширину, 32 пикселя в высоту и 3 канала для цветов RGB). После применения сверточного слоя, мы получаем активации размером 32x32x64 (где 64 – количество фильтров).
Для каждого канала активации мы вычисляем среднее значение и дисперсию по всему мини-батчу. Затем мы используем эти значения для нормализации активаций. Например, если среднее значение для определенного канала составляет 0.5, а дисперсия – 1.5, то мы вычитаем 0.5 из каждого элемента активации и делим на корень из 1.5. Это приводит к тому, что активации становятся центрированными вокруг нуля и имеют стандартное отклонение, близкое к 1.
Этот процесс повторяется для каждого мини-батча в процессе обучения, что позволяет сети более стабильно обучаться на различных данных и делать более точные прогнозы.
Пример использования Batch Normalization в сверточной нейронной сети с использованием библиотеки PyTorch:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(64) # Batch Normalization после первого сверточного слоя
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(128) # Batch Normalization после второго сверточного слоя
self.fc1 = nn.Linear(128 * 16 * 16, 256)
self.fc2 = nn.Linear(256, 10)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = F.relu(self.bn2(self.conv2(x)))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = x.view(-1, 128 * 16 * 16)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# Создаем экземпляр сети
model = ConvNet()
# Определяем функцию потерь и оптимизатор
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# Пример обучения на некоторых данных
for epoch in range(num_epochs):
for images, labels in train_loader:
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
```
Это простой пример сверточной нейронной сети с Batch Normalization после каждого сверточного слоя. Важно отметить, что в PyTorch Batch Normalization включается просто путем добавления слоя `nn.BatchNorm2d` после сверточного слоя, как показано в примере.
Эти элементы работают вместе, создавая мощные и эффективные архитектуры сверточных нейронных сетей, которые могут извлекать иерархические представления данных и решать сложные задачи в области компьютерного зрения и других прикладных областях.
Глава 2. Свертка и пулинг
– Свойства и операции свертки
– Различные виды пулинга: max-pooling, average-pooling
– Роль и преимущества пулинга в CNN
Сверточные нейронные сети (CNN) используют свертку и пулинг для эффективного извлечения признаков из входных данных, таких как изображения. Вот более подробное объяснение этих концепций:
Свертка – это операция, которая сканирует входное изображение с помощью фильтров (ядер), извлекая локальные признаки. Каждый фильтр выделяет определенные паттерны, такие как края, текстуры или другие визуальные характеристики. Свертка выполняется путем перемещения фильтра по изображению и вычисления скалярного произведения между значениями пикселей и значениями ядра.
– Ядро свертки – это матрица весов, которая применяется к подматрице входного изображения для вычисления значения на выходном изображении. На этом шаге модель извлекает локальные признаки изображения, учитывая их структуру и распределение.