.

Обратимся к рассмотрению проблемы точности. Мы уже иллюстрировали ее эмпирический аспект. Для того чтобы обеспечить точные данные, которые требовались для конкретных применений парадигмы Ньютона, нужно было особое оборудование вроде прибора Кавендиша, машины Атвуда или усовершенствованного телескопа. С подобными же трудностями встречается и теория при установлении ее соответствия с природой. Применяя свои законы к маятникам, Ньютон был вынужден принять гирю маятника за точку, обладающую массой гири, чтобы иметь точное определение длины маятника. Большинство из его теорем (за немногими исключениями, которые носили гипотетический или предварительный характер) игнорировали также влияние сопротивления воздуха. Все это были законные физические упрощения. Тем не менее, будучи упрощениями, они так или иначе ограничивали ожидаемое соответствие между предсказаниями Ньютона и фактическими экспериментами. Те же трудности, даже в более явном виде, обнаруживаются и в применении теории Ньютона к небесным явлениям. Простые наблюдения с помощью телескопа показывают, что планеты не вполне подчиняются законам Кеплера, а теория Ньютона указывает, что этого и следовало ожидать. Чтобы вывести эти законы, Ньютон вынужден был пренебречь всеми явлениями гравитации, кроме притяжения между каждой в отдельности планетой и Солнцем. Поскольку планеты также притягиваются одна к другой, можно было ожидать лишь относительного соответствия между применяемой теорией и телескопическими наблюдениями[31].

Достигнутое соответствие, разумеется, представлялось более чем удовлетворительным для тех, кто его достиг. За исключением некоторых проблем движения Земли, ни одна другая теория не могла достигнуть подобного согласия с экспериментами. Ни один из тех, кто сомневался в обоснованности труда Ньютона, не делал этого в силу того, что этот труд был недостаточно согласован с экспериментом и наблюдением. Тем не менее ограниченность данного соответствия оставляла множество заманчивых теоретических проблем для последователей Ньютона. Например, требовались особые теоретические методы для истолкования движения более чем двух одновременно притягивающихся тел и исследования стабильности орбит при возмущениях. Проблемами, подобными этим, были заняты многие лучшие европейские мыслители на протяжении XVIII и начала XIX веков. Эйлер, Лагранж, Лаплас и Гаусс посвятили свои самые блестящие работы совершенствованию соответствия между парадигмой и наблюдением небесных явлений. Многие из этих мыслителей в то же время работали над прикладными проблемами применения математики в областях, о которых не могли думать ни сам Ньютон, ни его современники из континентальной школы механиков. Они написали множество работ и развили весьма мощный математический аппарат для гидродинамики и для решения проблемы колебания струны. В процессе решения этих прикладных проблем была осуществлена, вероятнее всего, наиболее блестящая и трудоемкая из научных работ XVIII столетия. Другие примеры можно почерпнуть из обзора постпарадигмального периода в развитии термодинамики, волновой теории света, электромагнитной теории или других отраслей науки, в которых фундаментальные законы получили законченное количественное выражение. По крайней мере в наиболее математизированных науках основная часть теоретической работы состояла именно в этом.

Но это не значит, что вся работа имела подобный характер. Даже в математических науках существуют теоретические проблемы, связанные с более глубокой разработкой парадигмы. В те периоды, когда в науке преобладает качественное развитие, подобные проблемы выдвигаются на первый план. Некоторые из этих проблем, как в науках, использующих более широко количественные методы, так и в науках, пользующихся преимущественно качественными методами, нацелены просто на уяснение сути дела посредством введения новых формулировок. Например, практическое применение «Начал» не всегда оказывалось легкой работой. С одной стороны, это объясняется определенной тяжеловесностью, неизбежной в любом научном начинании, а с другой – тем, что в отношении применения слишком многое из содержания этого труда лишь подразумевалось. Во всяком случае, для многих приложений «Начал» к «земным» проблемам методы, развитые, по-видимому, для другой области континентальными исследователями, выглядели намного более эффективными. Поэтому, начиная с Эйлера и Лагранжа в XVIII веке до Гамильтона, Якоби, Герца в XIX веке, многие из блестящих европейских специалистов по математической физике неоднократно пытались переформулировать теоретическую механику так, чтобы придать ей форму, более удовлетворительную с логической и эстетической точки зрения, не изменяя ее основного содержания. Иными словами, они хотели представить явные и скрытые идеи «Начал» и всей континентальной механики в логически более связном варианте, в таком, который был бы одновременно и более унифицированным, и менее двусмысленным в его применениях к вновь разработанным проблемам механики