Значителен вклад в установление молекулярно-генетических механизмов старения R. Cutler, F. Verzar, L. Szillard, B. Strehler (60–70-е годы). В СССP это направление развивал В.В. Фролькис, сформулировавший генно-регуляторную теорию старения. Значение возрастного гипометилирования ДНК в механизмах старения впервые было выявлено в работах Б.Ф. Ванюшина (1973).
C работами L. Hayflick (1961) связаны представления о конечном числе возможных удвоений клеток как факторе, определяющем продолжительность индивидуальной жизни («лимит Хейфлика»). Впоследствии было показано, что при репликативном копировании ДНК концевые повторы ее оснований (теломеры) не копируются, и поэтому с каждым делением ДНК становится короче. Этот феномен, теоретически предсказанный А.М. Оловниковым (1971, 1972) и J. Watson (1972), получил свое блестящее подтверждение в исследованиях, вскрывших молекулярные механизмы укорочения теломер.
Известно, что большинство клеток организма человека, до того как они состарятся, могут делиться только определенное количество раз. Клетки из разных тканей, такие, как остеобласты в костях, эндотелиальные клетки в кровеносных сосудах, ретинальные пигментные эпителиальные клетки глаз, фибробласты кожи, лимфоциты крови и многие другие могут быть выращены в лабораторных условиях, однако лимит их жизни ограничен и определяется примерно 20–100 удвоениями (в зависимости от возраста донора), а затем они прекращают деление и входят в состояние, называемое возрастным или клеточным старением.
Этот феномен возраста клетки впервые был описан детально Леонардом Хейфликом в 1961 году, и поэтому предел клеточной пролиферации часто называют лимитом Хейфлика. С момента этого открытия Национальный институт старения (США) финансировал значительную часть исследований механизмов старения клеток в надежде на то, что будет обнаружен ключевой механизм, а это позволило бы вмешиваться в процесс старения на клеточном уровне.
В каждой из миллиардов клеток, составляющих наше тело, внутри ядра находится модель программы жизни, заключенная в ДНК. Она обусловливает индивидуальность каждого человека в утробе матери, будущий цвет глаз, пол, рост после рождения и последующие изменения в течение жизни – процесс, называемый старением. С тех пор как Хейфликом был открыт феномен возраста клетки, стало ясно, что существуют часы, которые отсчитывают не время, а число делений клетки.
За десятилетия, прошедшие после открытия Хейфлика, возникла теория механизма этих «часов» – теломерная гипотеза. Согласно этой гипотезе «часы» старения клетки пребывают на линейных окончаниях молекулы ДНК, в районе, называемом телoмер (tea-low-mere). Линейное окончание каждого участка ДНК заканчивается последовательностью TTAGGG, которая повторяется сотни раз, эффективно завершая конец. Это похоже на то, как пластик на концах шнурков нашей обуви покрывает и защищает шнурки от разволокнения.
В соответствии с теломерной гипотезой при делении клеток эта концевая часть ДНК укорачивается с каждым делением. При достижении ДНК критической длины деление клетки прекращается, и наступает ее старение. В некоторых клетках, например репродуктивных, теломерные часы «не тикают», теломеры не укорачиваются, а клетки, несомненно, могут делиться неопределенно долго – характеристика, свойственная «бесмертию» (immortality). «Бессмертие» клеток не означает, что они не могут умирать. Конечно же, как и ко всем клеткам, к ним нужно относиться бережно, чтобы сохранить их жизнеспособность. Бессмертие предполагает, что эти клетки не смертны, т. е. они не подвержены старению после определенного количества удвоений. Бессмертные клетки, при условии, что они основательно подпитаны и укреплены, потенциально могут делиться бесконечно.