Остатки самих метанобразующих архей и метанокисляющих бактерий обнаружены в кремнистых сланцах возрастом 3,47 млрд лет на кратоне Пилбара. Сами микроскопические остатки, напоминающие нитчатые колониальные бактерии, были найдены четверть века назад, но их органическая природа оспаривалась. Лишь в наши дни благодаря точечному анализу изотопного состава углерода в органическом веществе удалось доказать, что некоторые микрофоссилии принадлежат метанобразующим археям (их изотопная подпись варьирует от –33‰ до –38‰), а другие – метанокисляющим бактериям (δ>13С = –39‰). Углерод археи могли извлекать из ацетатов – солей уксусной кислоты (СН>3СООН), которые формировались при выветривании древних континентов, либо из углекислого газа. А необходимый им для синтеза метана водород (донор электрона) выделялся при воздействии морской воды на свежую океаническую кору, где водород теряли богатые железом коматииты и базальты в результате деятельности железоокисляющих анаэробных бактерий.
Изотопная подпись углерода показывает отклонение (δ>13С) в соотношении стабильных изотопов этого элемента (>13С/>12С) в исследуемом образце от такового в стандарте, выраженное в количестве частиц на тысячу – промилле (‰). Этот показатель рассчитывается по формуле:
δ>13С = [(>13С/>12С) >образец – (>13С/>12С) >стандарт/(>13С/>12С) >стандарт] × 10>3.
По той же формуле определяются отклонения изотопной подписи (δ) других элементов, о которых речь пойдет ниже (>18О/>16О, >30Si/>28Si, >34S/>32S, >11B/>10B, >15N/>14N, >7Li/>6Li). Разными для каждой пары являются только стандартные образцы.
В отличие от радиоактивного изотопа (>14С) доля стабильных изотопов углерода в современном мире постоянна (>12С/>13С = 98,89/1,11). Поэтому любые отклонения от стандартной пропорции определимы и значимы, а в случае углерода практически всегда опосредованы деятельностью живых существ.
Метанобразующие археи вполне могли поддержать концентрацию метана в атмосфере, достаточную для создания парникового эффекта, – на уровне 0,1 % (ныне < 0,0002 %) или его смесь с СО>2. Поскольку в отсутствие главного окислителя – кислорода – продолжительность существования молекул метана могла быть на три порядка больше, чем нынешний 10-летний срок, по достижении соотношения СН>4/СО>2, близкого к 1, молекулы метана полимеризовались до этана (С>2Н>6). И легкая дымка превратилась в туман, в котором содержание метана могло в 600 раз превышать современный уровень. (Похожая по составу атмосфера с метановыми облаками и дождями существует на Титане, спутнике Сатурна.) При определенной размерности частиц и наличии в нем паров воды туман мог оставаться проницаемым и не препятствовал нагреву поверхности Земли. Под защитой метано-этанового тумана могла повыситься и концентрация NН>3, OСS и серных соединений, включая аэрозоли полиатомной серы (S>8).
Глава 5
Архей и археи
Сиренево-оранжевый туман не просто уберег Землю от переохлаждения, но, возможно, сделал планету даже более жаркой, чем ныне. Соотношение стабильных изотопов кислорода (>18О/>16О) и кремния (>30Si/>28Si) в архейском (3,5–2,5 млрд лет) осадочном кремнеземе, удержавшем первичный изотопный сигнал, указывает на температуру океанических вод в пределах 50–60 °C. Близкое соотношение этих изотопов выявлено и в естественных пробах архейской воды – капельках, заключенных в кристаллах галита (каменной соли), а также в керогенах (только для >18О/>16О). Если повышенные значения изотопных подписей кислорода и кремния в кремнеземе еще можно объяснить осаждением этого минерала вблизи гидротерм или в теплых изолированных водоемах, то кероген формировался в нормально-морских условиях.