Этот вероятностный принцип также сохраняется в случаях, когда я прогнозирую, чем завершатся отдельные кампании. Например, насколько велика вероятность выигрыша кандидата, если он, по итогам опросов, опережает конкурента на пять пунктов? Именно такие вопросы и призваны решать модели типа FiveThirtyEight.

Ответ на подобный вопрос в значительной степени зависит от типа гонки, в которую вовлечен кандидат. Чем ниже уровень выборов, тем более волатильными становятся результаты: данные опросов на предвыборной гонке в Конгресс менее точны, чем данные опросов при выборах в Сенат, а те, в свою очередь, менее точны, чем опросы перед выборами президента. Также считается, что, в целом опросы в ходе предварительных партийных выборов (праймериз) значительно менее точны, чем опросы в ходе общих выборов. Во время праймериз Демократической партии в 2008 г. средняя величина ошибки в данных опроса составляла около восьми пунктов – значительно больше, чем подразумевается при оценке ее погрешности. Проблема опросов в ходе республиканских праймериз 2012 г. была еще масштабнее{172}. Фактически во многих важных штатах – включая Айову, Южную Каролину, Флориду, Мичиган, Вашингтон, Колорадо, Огайо, Алабаму и Миссисипи – кандидат, лидировавший в ходе опросов за неделю до выборов, проигрывал гонку.

Однако опросы становятся более точными по мере приближения дня выборов. В табл. 2.3 представлены некоторые результаты, полученные с использованием упрощенной версии модели прогнозирования FiveThirtyEight для выборов в Сенат, использовавшей данные за период с 1998 по 2008 г. В модели рассчитывалась вероятность выигрыша кандидата на основе значения средней величины его опережения в ходе опросов. Допустим, кандидат в Сенат, имевший пятипроцентное опережение, выигрывал гонку в 95 % случаев – это было почти гарантировано, хотя пресса часто называла предвыборную гонку «непредсказуемой». Напротив, в случае преимущества в пять пунктов за год до выборов, шансы на победу составляют лишь 59 % – чуть лучше, чем при гадании с помощью подбрасывания монетки.

В подобных условиях ценность моделей типа FiveThirtyEight становится очевидной. Нет никаких проблем с тем, чтобы посмотреть на цифры, увидеть, что некий кандидат ведет по данным некоторых или всех опросов, и понять, что он является фаворитом (за некоторыми исключениями это предположение будет правильным). Гораздо сложнее понять, в какой мере он выступает фаворитом. Наши мозги, приученные находить закономерности, всегда пытаются найти в данных сигнал, хотя, на самом деле, вместо этого нам следует оценивать степень шума.


Таблица 2.3. Вероятность победы кандидата на выборах в Сенат, основанная на среднем показателе опережения в ходе опросов


Я привык именно к такому стилю мышления, а предпосылкой для него является опыт, приобретенный, когда я имел дело с двумя дисциплинами – спортом и покером, в которых вы, так или иначе, сталкиваетесь со всеми вариантами развития событий. Сыграв достаточное количество партий в покер, вы получаете некоторое количество комбинаций ройял-флэш. Стоит вам сыграть еще, и вы окажетесь в ситуации, когда у вас на руках будет фулл-хаус, а ройял-флэш придет вашему сопернику. В спорте, особенно бейсболе, также возникают события с низкой вероятностью. Так, команда Boston Red Sox не смогла выйти в плей-офф в 2011 г., несмотря на то что в какой-то момент ее шансы на это составляли 99,7 %{173}, – хотя лично я не стал бы спорить с человеком, считающим, что в случае Red Sox или Chicago Cubs обычные законы вероятности просто не работают.