Если бы простые клетки медленно эволюционировали до более сложных на протяжении миллиардов лет, существовали бы всевозможные промежуточные клетки, причем некоторые из них – и сейчас. Но таких нет, и мы наблюдаем этот гигантский разрыв, непонятную пропасть, странную паузу. С одной стороны, есть бактерии, очень маленькие и по объему клетки, и по размеру генома. Естественный отбор как бы отсек у них все лишнее, свел их структуру к необходимому минимуму: это своего рода самолеты-истребители среди клеток. С другой стороны, существуют огромные и неуклюжие эукариотические клетки, больше напоминающие авианосцы, чем истребители. Типичная одноклеточная эукариота примерно в 15 тысяч раз крупнее бактерии, и геном у нее под стать размеру.
Вся сложная жизнь на Земле – животные, растения, грибы и т. д. – это эукариоты. Все они в ходе эволюции произошли от общего предка. Так что без единичного события, породившего предка эукариотических клеток, не было бы растений и рыб, динозавров и обезьян. У простых клеток вообще нет клеточной архитектуры, необходимой для эволюционного превращения в более сложные формы.
Почему это так? В 2010 году я рассмотрел данный вопрос совместно с Биллом Мартином из Дюссельдорфского университета, одним из пионеров современной биологии клетки. Основываясь на данных о скорости метаболизма и размере генома различных клеток, мы рассчитали, сколько энергии оказалось бы доступно простым клеткам по мере того, как они становились бы всё крупнее и крупнее.
Как мы обнаружили, за такой рост приходится платить огромный энергетический штраф. Если увеличить бактерию до размеров эукариоты (одноклеточной), для нее будет доступно в десятки тысяч раз меньше энергии в пересчете на один ген, чем для аналогичной эукариоты. А клеткам требуется много энергии на каждый ген, поскольку процесс создания белка на основе гена требует больших энергетических затрат. Основная часть энергии клетки как раз и тратится на синтез белков.
На первый взгляд, идея о том, что бактерии ничего не приобретают, увеличиваясь в размерах, кажется не совсем верной: существуют некоторые гигантские бактерии, которые по своим размерам крупнее многих сложных клеток: показательный пример – Epulopiscium, процветающая в кишечнике рыбы-хирурга. Но у Epulopiscium до 200 тысяч копий ее полного генома. Если учесть все эти многочисленные геномы, окажется, что энергия, доступная для каждой копии каждого гена, почти в точности равна такой энергии для нормальной бактерии, несмотря на гигантское общее количество ДНК у Epulopiscium. Возможно, лучше рассматривать их как ансамбли клеток (слившихся воедино), чем как гигантские клетки.
Почему же гигантским бактериям требуется так много копий генома? Вспомним, что клетки добывают энергию из силового поля, создающегося на их мембранах, и что потенциал на них равен, в сущности, потенциалу молнии. Если клетки обращаются с ним неумело, это приводит к тяжелым последствиям: утратив контроль над своим мембранным потенциалом, они погибнут. Лет двадцать назад биохимик Джон Аллен (ныне – мой коллега по Лондонскому университетскому колледжу) предположил, что геномы играют ключевую роль в контроле мембранного потенциала, поскольку они способны управлять выработкой белков. Геномы должны располагаться поблизости от контролируемой мембраны, чтобы быстро откликаться на локальные изменения условий. Аллен и другие ученые собрали большое количество данных, подтверждающих, что это верно для эукариот. Есть веские основания считать, что так обстоит дело и в простых клетках.