) на уровне 20 кг/ч.

В дальнейшем мы везде полагаем, что к Луне «восьмерка» движется на максимальной мощности. А скорость автомобиля в любой момент оцениваем по формуле:

v = W/F. (1)

W, понятно, это мощность двигателя, а F – сила, действующая на автомобиль в данный момент времени. Далее везде под этой силой я буду понимать силу тяжести, то есть × g(r) (g – ускорение свободного падения, которое зависит от высоты над поверхностью Земли r; M – масса автомобиля в данный момент времени). Как видим, силами трения, а также собственным ускорением автомобиля я полностью пренебрегаю. Возможность пренебречь ими я обсужу ниже, пока же отмечу, что отбрасывание этих сил, бесспорно, «завышает» значение скорости, – значит, полученное решение задачи будет давать минимальные время и количество топлива для подъема ВАЗ-21083 на Луну.

Дальнейшее – простая математика. Вводим радиус Земли R (нетрудно догадаться, зачем: g(r) = gR²/(R + r)²) и получаем следующее уравнение движения:

v = W/{(m + x – at) × gR²} × (R + r)². (2)

Что есть что в формуле (2): t – это, понятно, время (с момента старта), а x – та самая неизвестная масса топлива (кислорода, еды), которую нужно принять на борт, чтобы было на чём долететь до Луны.

Если вспомнить, что v есть производная от r, то получаем обыкновенный диффур первого порядка, в котором, кстати, ещё и переменные разделяются. Не буду утомлять решением диффура, напишу его сразу:

1/(R + r) = W/gR²a ln{(m + x – at)/(m + x)} + 1/R. (3)

И что теперь? Понятно, что расстояние до Луны много больше радиуса Земли, поэтому для простоты положим его равным бесконечности. Кроме того, мы рассчитываем, что топлива хватит аккурат до момента достижения лунной поверхности, то есть x = t в момент прилунения. Тогда из (3) получаем простой ответ:

x = m {exp(gRa/W) – 1}; (4)

t = m/a {exp(gRa/W) – 1}.

Ну, и самое время получить из буквенных оценок численные. g = 10 м/с², R= 6400 км, значит, gRa/W = 7,11… Возводя в эту степень экспоненту, получаем примерно 1200. То есть топлива с собой нужно взять по меньшей мере на три порядка больше массы самого автомобиля – где-то 1 тыс. т. Сколько же в таком случае путешествие займёт времени? Из второй формулы получаем: 60 тыс. часов, или почти семь лет!

Ответ получен, осталось разобраться, насколько он корректен. Ну, во-первых, вдумчивый читатель сразу меня упрекнет в том, что я нигде не оценивал массу кислорода и еды, необходимых «пилоту» и двигателю для поддержания жизни. Что ж, упрек справедлив. Давайте примем, что кислорода и еды уходит в единицу времени примерно столько же, сколько и бензина – 20 кг/ч. Это означает, что в наших формулах нужно вдвое увеличить коэффициент а, что приведёт к увеличению и времени полёта, и первоначальной массы ещё на три порядка. То есть масса топлива увеличивается до более чем 1 млн. т, а время полета – почти до 10 тыс. лет!

Теперь – о тех силах, которыми мы пренебрегли. Во-первых, силой трения: простой расчёт показывает, что на старте сила трения по крайней мере на порядок ниже силы тяготения. Действительно, в «земных» условиях при скорости 200 км/ч сила трения максимальна и равна Fmp = W/v = 50 000/200 × 3,6 = 900 Н (коэффициент 3,6 взялся при пересчете «км/ч» в «м/с»). В то же время сила тяготения Fg= mg = 1000 × 10 = 10 тыс. Н. То есть в принципиально важный отрезок времени – разгона автомобиля – сила трения и вправду несущественна.

Во-вторых, мы везде пренебрегали ускорением автомобиля (то есть сила F = ma нигде не учитывалась). Простые оценки показывают, что на расстояниях до 100