«Недостающее звено» в эволюции фотосинтеза. Как произошел переход от бескислородного фотосинтеза (при котором донором электрона служит сероводород) к кислородному, при котором донором электронов служит вода? Еще в 1970 году была предложена теоретическая модель, согласно которой этот переход осуществился через промежуточный этап, когда донорами электрона служили соединения азота[23]. Однако до самого последнего времени азотный фотосинтез оставался чисто гипотетической конструкцией – в природе его обнаружить не удавалось.
Лишь в 2007 году азотный фотосинтез – искомый промежуточный этап на пути становления кислородного фотосинтеза – наконец-то был обнаружен. Открытие было сделано в ходе изучения микробов, обитающих в пресных водоемах и отстойниках сточных вод[24]. Микробиологи из университета Констанца (Германия) выращивали микробов в бескислородных условиях на свету в среде с небольшим количеством нитрита (NО>2>-). Через несколько недель в 10 пробах из 14 стала заметна розовая окраска, характерная для бактерий, практикующих бескислородный фотосинтез, и было зарегистрировано окисление нитритов и превращение их в нитраты (NО>3>-). При помощи специальных тестов удалось показать, что окисление нитритов является результатом именно фотосинтеза, а не какого-либо иного биологического или химического процесса.
Активнее всего осуществляли "азотный" фотосинтез микробы, происходящие из отстойника города Констанца. Из этой культуры выделили самый массовый вид бактерий – шарообразные клетки диаметром 2–3 микрометра – и при помощи генетического анализа установили их родственные связи. Выяснилось, что ближайшим родственником этих микробов является Thiocapsa roseopersicina, широко распространенная фотосинтезирующая бактерия, относящаяся к группе пурпурных серных бактерий (эти микроорганизмы при фотосинтезе используют в качестве донора электрона соединения серы).
Это открытие интересно еще и тем, что оно расширяет наши представления об участии микробов в круговороте азота. До сих пор не были известны фотосинтезирующие организмы, способные окислять соединения азота в отсутствие кислорода. Теперь эту возможность придется учитывать и при реконструкции ранних (бескислородных) этапов эволюции биосферы.
Важность сделанного цианобактериями "открытия" трудно переоценить. Без цианобактерий не было бы и растений, ведь растительная клетка – результат симбиоза нефотосинтезирующего (гетеротрофного) одноклеточного организма с цианобактериями. Все растения осуществляют фотосинтез при помощи особых органелл – пластид, которые суть не что иное, как симбиотические цианобактерии. И неясно еще, кто главный в этом симбиозе. Некоторые биологи говорят, пользуясь метафорическим языком, что растения – всего лишь удобные "домики" для проживания цианобактерий. По сути дела цианобактерии не только изобрели кислородный фотосинтез, но и по сей день сохранили за собой "эксклюзивные права" на его осуществление.
Цианобактерии не только создали биосферу "современного типа". Они и сегодня продолжают ее поддерживать, производя кислород и синтезируя органику из углекислого газа. Но этим не исчерпывается круг их обязанностей в глобальном биосферном круговороте. Цианобактерии – одни из немногих живых существ, способных фиксировать атмосферный азот (N>2), переводя его в доступную для всего живого форму. Азотфиксация абсолютно необходима для существования земной жизни, а осуществлять ее умеют только прокариоты, и то далеко не все.
Главная проблема, с которой сталкиваются азотфиксирующие цианобактерии, состоит в том, что ключевые ферменты азотфиксации – нитрогеназы – не могут работать в присутствии кислорода, который выделяется при фотосинтезе. Поэтому у азотфиксирующих цианобактерий выработалось разделение функций между клетками. Эти виды цианобактерий образуют нитевидные колонии, в которых одни клетки занимаются только фотосинтезом и не фиксируют азот, другие – покрытые плотной оболочкой гетероцисты – не фотосинтезируют и занимаются только фиксацией азота. Эти два типа клеток, естественно, обмениваются между собой производимой продукцией (органикой и соединениями азота).