Метаобучение отличается от методов тем, что прецедентами являются ранее решенные задачи обучения. Требуется определить, какие из используемых в них приемов работают более эффективно. Конечная цель – обеспечить постоянное автоматическое совершенствование алгоритма обучения с течением времени.

Биологическое моделирование искусственного интеллекта. Биокомпьютинг, или квазибиологическая парадигма (Biocomputing), – это биологическое направление в ИИ, сосредоточенное на разработке и использовании компьютеров, которые функционируют как живые организмы или содержат биологические компоненты, так называемые биокомпьютеры. В отличие от понимания ИИ, когда исходят из положения о том, что искусственные системы не обязаны повторять в своих структуре и работе структуру и протекающие в ней процессы, присущие биологическим системам, сторонники биокомпьютинга считают, что феномены человеческого поведения, способность человека к обучению и адаптации есть следствие именно биологической структуры и особенностей ее функционирования. Биокомпьютинг позволяет решать сложные вычислительные задачи, организуя вычисления при помощи живых тканей, клеток, вирусов и биомолекул. Часто используют молекулы дезоксирибонуклеиновой кислоты, посредством которых создают ДНК-компьютер. Биопроцессором также могут служить белковые молекулы и биологические мембраны. Например, на основе бактериородопсин-содержащих пленок создают молекулярные модели перцептрона.

Представление и использование знаний. Представление знаний (ПЗ), или Knowledge Representation (KR) – это область ИИ, в которой изучают то, как могут быть представлены знания и факты о мире и какие рассуждения могут быть сделаны с этими знаниями. Проблематикой ПЗ является возможность представления знаний таким образом, чтобы они были достаточными (в полном объеме содержали знания, необходимые для решения проблемы); не избыточными (компактными, естественными, пригодными для эффективных вычислений); способными выразить особенности проблемы; могли компенсировать недостаточную точность представляемых данных и обеспечить приемлемое время вычислений.

Для решения этих задач используется методология инженерии преставления знаний, в которых выделяют:

– декларативные знания, основанные на понятиях, фактах и объектах. Они дают всю необходимую информацию о проблеме в виде простых истинных или ложных утверждений;

– процедурные знания – правила, стратегии, программы и процедуры. Они описывают то, как проблема может быть алгоритмически решена, и шаги на пути ее решения;

– эвристические знания, накапливаемые интеллектуальной системой в процессе ее функционирования, а также заложенные в ней априорно, но не имеющие статуса абсолютной истинности в данной проблемной области. Обычно эвристические знания связаны с отражением в базе знаний неформального опыта решения задач. Эвристические знания основаны на правиле «большого пальца», т. е. на отказе от очевидно неприемлемых вариантов. Эвристические представления полезны для управления процессом рассуждения. При этом представление знаний базируется на стратегиях решения проблем в соответствии с опытом преодоления прошлых проблем, которым обладает эксперт;

– метазнания, дающие представление о других типах знаний, которые подходят для решения проблемы. Это «знания о знании», о том, как оно устроено и структурировано; «знания о получении знаний», т. е. приемы и методы познания (когнитивные умения) и оценка возможностей работы с ним. Иными словами, метазнания объединяют знания о способах использования знаний и знания о свойствах знаний. Задача применения метазнаний состоит в повышении эффективности решения проблем посредством правильного процесса рассуждения;