Существуют разнообразные методы машинного обучения: глубокое обучение с использованием нейронных сетей, обучение с подкреплением, обучение на основе статистических принципов. Многие программы ИИ применяются для анализа и обработки изображений или речи либо извлечения информации из них. Глубокое обучение зачастую необходимо для прогнозов, таких как медицинские диагнозы или возможное мошенничество с кредитными картами.
История. Старт развития искусственного интеллекта в современном его понимании произошел в 1950-х гг. XX в. и изначально предполагал решение сложных математических задач и создание «мыслящих машин». С самого начала сложились два конкурирующих подхода. Один – с применением формальных правил для манипулирования символами, логического подхода, не основанного на биологии. Этот подход получил название «старый добрый искусственный интеллект» (Good Old-Fashioned Artificial Intelligence, GOFAI). Сторонники второго подхода исходили из того, как работает мозг, и создавали «искусственные нейронные сети», базирующиеся на моделях, в основу архитектуры которых положена нейронная структура мозга.
В первые 20 лет GOFAI принес больший успех, что привело к значительному государственному финансированию. В реальных же условиях GOFAI не дал значимых результатов. Методология использования искусственных нейронных сетей не прошла проверку прикладными задачами и в 1970-х гг. финансирование исследований прекратилось, их количество уменьшилось, а сообщество ИИ сократилось. Через 10 лет, когда были усовершенствованы системы GOFAI и нейронные сети, решение задач, считавшихся ранее неразрешимыми, стало достижимым, и область ИИ снова стала казаться многообещающей. Однако надежды вновь не оправдались, и к 1990 г. количество исследований ИИ снова сократилось. Успех к рассматриваемой технологии пришел в начале 2000-х гг., что было обусловлено рядом значимых факторов:
– прогрессом методологии Deep Learning, модели решения задач, вдохновленной биологическими свойствами нейронных сетей;
– возможностью использования огромных объемов данных, ставших доступным в настоящее время;
– возросшей вычислительной мощностью процессоров;
– возможность горизонтального наращивания мощности вычислительных комплексов.
Обладая большими массивами данных, современные нейронные сети ИИ зачастую превосходят человека в решении многих задач, например в распознавании образов, моделировании, играх. Такая эффективность ранее была недостижима для систем ИИ. При этом системы, обеспечившие технологический и научный прорыв, могут самообучаться.
Для проведения сравнительной оценки ИИ и человеческих возможностей в 1950 г. А. Тьюринг предложил то, что станет известным как «тест Тьюринга». До сих пор еще ни ода система ИИ не прошла такой тест. Согласно правилам этого теста ИИ должен обрабатывать естественный язык, уметь учиться на разговорной речи и помнить сказанное, сообщать идеи человеку и усваивать общие понятия, отображая то, что мы называем здравым смыслом. Первым таким предложенным тестом стала игра, в которой участвуют мужчина, женщина и следователь. Задача следователя (ИИ) состоит в том, чтобы определить, кто из участников мужчина, а кто женщина. Невыполнимость по настоящее время теста Тьюринга связана с простым вопросом: попадает ли, в принципе, эта способность системы казаться разумной в область вычислимых проблем? Повсеместное распространение ИИ в виде голосовых помощников, систем распознавания изображений, голоса, автоматического перевода могут создать иллюзию того, что ИИ уже скоро достигнет уровня человеческого интеллекта. Однако ИИ нуждается в огромном количестве данных, чтобы учиться, в отличие от нашего мозга, который может учиться на разовом опыте, выстраивать заключения из одного-единственного события. Для поступательного развития ИИ необходимо дальнейшее углубление знаний об основных принципах функционирования мозга и о видах биологических сокращений, посредством которых человеческий мозг выполняет задачи. Несмотря на недостижимость идеала, повсеместное распространение методологии ИИ дает ощутимую пользу для решения специальных задач.