Степень нашего доверия древу, которое мы в итоге выберем, зависит от того, насколько мы уверены в правильности каждого разветвления. Поэтому возле точек ветвления часто указывают степень “уверенности” в них. При использовании байесовского метода правдоподобие точек ветвления вычисляется автоматически, однако для других методов, таких как парсимония или максимальное правдоподобие, необходимы альтернативные способы подсчета. Чаще всего используют метод бутстрепа: многократно обсчитываются выборки данных, и оценки сравниваются с результатами для всего древа. Так мы можем понять, насколько древо устойчиво к ошибкам. Чем больше индекс бутстреп-поддержки, тем надежнее точка ветвления. Правда, точно интерпретировать полученные индексы бывает непросто. По сходному алгоритму работают методы “складного ножа” (jackknife) и “поддержки Бремера”. Все они служат для оценки достоверности точек ветвления.

Прежде чем оставить литературу, рассмотрим итоговое древо, построенное для первых 250 строк в 24 манускриптах Чосера. Это филограмма, на которой информативна не только схема ветвления, но и длина ветвей. На схеме видно, какие списки почти идентичны, а какие сильно отличаются от остальных. Эта филограмма неукорененная, то есть не указывает на то, какой из 24 манускриптов ближе всех к “оригиналу”.

Вернемся к гиббонам. Принцип парсимонии предполагает существование четырех групп. Ниже приведена укорененная диаграмма, основанная на морфологических признаках. Здесь виды рода Hylobates (настоящие гиббоны) группируются вместе, как и виды рода Nomascus. Обе группы поддерживаются высокими индексами бутстреп-поддержки (указаны над ветвями). Однако в нескольких местах порядок ветвлений не определен. Хотя Hylobates и Bunopithecus вроде бы формируют группу, индекс бутстреп-поддержки (63) представляется неубедительным для тех, кто умеет читать подобные руны. Морфологических признаков для построения древа недостаточно.


Укорененная кладограмма гиббонов, построенная на основе морфологии. Geissmann [100].


По этой причине Кристиан Роос и Томас Гайсман, ученые из Германии, обратились к молекулярной генетике, а именно к участку митохондриальной ДНК, который называют контрольным регионом. Взяв ДНК шести гиббонов, они расшифровали последовательности, выровняли их и провели анализ с помощью методов поиска ближайшего соседа, парсимонии и максимального правдоподобия. Самый убедительный результат был получен с помощью метода максимального правдоподобия, который лучше других методов справляется с эффектом притяжения длинных ветвей. Итоговое древо, где показаны отношения между четырьмя группами, приведено здесь. Значения бутстреп-поддержки на этом древе вполне убедительны. Так что, на мой взгляд, это то, что нам нужно.


Кладограмма гиббонов, построенная с помощью метода максимального правдоподобия по данным ДНК. Roos and Geissmann [246].


Видообразование у гиббонов произошло сравнительно недавно. Однако если изучать все более удаленные виды, которые будут разделены все более длинными ветвями, в конце концов даже изощренные методы Байеса и максимального правдоподобия откажутся нам служить. В определенный момент недопустимо большая доля сходств окажется случайной. Когда это происходит с ДНК, говорят, что наступило насыщение. И тогда ни один метод не поможет реконструировать схему родственных отношений: действие времени заглушает “филогенетический” сигнал. Особенно остро этот вопрос стоит в отношении нейтральных мутаций ДНК. Давление естественного отбора не позволяет генам сбиваться с пути, удерживая их в узком диапазоне. В некоторых случаях самые важные функциональные гены могут оставаться практически неизменными сотни миллионов лет. Однако для псевдогена, с которого никогда ничего не считывается, таких промежутков времени достаточно для безнадежно сильного насыщения. В таких случаях нам приходится искать другие данные. Одна из самых перспективных идей – использование редких геномных мутаций, о которых я упоминал. Эти изменения затрагивают значительные участки ДНК, а не одну “букву”. Поскольку такие перестройки редки и, как правило, уникальны, проблема случайного сходства не возникает. Эти мутации могут выявлять неожиданные родственные связи. Мы убедимся в этом, когда к толпе пилигримов присоединятся гиппопотамы. (Вот увидите, они расскажут удивительные вещи!)