Теперь возьмем много кусочков сахара разного размера и построим диаграмму, где на горизонтальной оси отложена масса (она пропорциональна объему), а на вертикальной – начальная скорость растворения кусочка (которую мы полагаем пропорциональной площади). На нелогарифмическом графике точки расположены вдоль кривой. Эту линию трудно интерпретировать. Но если мы отложим на графике логарифм массы и логарифм начальной скорости растворения, картина получится информативнее. На каждое троекратное увеличение логарифма массы будет приходиться двукратное увеличение логарифма площади поверхности. В логарифмическом масштабе точки не расположены вдоль кривой: они распределятся вдоль прямой линии. Более того, угол наклона этой прямой составит два к трем, то есть на каждые два шага по оси площади будет приходиться три шага по оси объема. На каждое двукратное увеличение логарифма площади будет приходиться троекратное увеличение логарифма объема. Угол наклона прямой на двойном логарифмическом графике может быть и другим. Графики подобного рода наглядны, потому что угол наклона прямой позволяет почувствовать, как взаимодействуют объем и площадь. А объем, площадь и сложные отношения между ними чрезвычайно важны для понимания того, как устроены организмы и их части.
Я не так уж силен в математике, но и меня очаровали эти расчеты. Еще сильнее меня восхищает, что этот же принцип годится для любых других фигур – не обязательно куба и сферы, но и для сложных: животных и органов животных, например почек и мозга. Для этого нужно, чтобы изменение размера представляло собой пропорциональное увеличение или уменьшение без изменения формы. Это дает нечто вроде нулевой гипотезы, исходя из которой мы можем оценивать реальные размеры. Так, если тело одного животного десятикратно длиннее тела второго, то его масса будет больше в тысячу раз, но лишь при условии, что у них одинаковая форма. Однако форма тела, судя по всему, закономерно эволюционировала по мере движения от маленьких животных к большим, и сейчас мы увидим, почему.
Форма тела крупных и мелких животных неизбежно различается – хотя бы из-за соотношения площади и объема. Если бы мы сделали из землеройки слона, пропорционально ее увеличив и сохранив форму, она бы не выжила. Она стала бы в миллион раз тяжелее, а это породило бы множество проблем. Одни связаны с объемом (массой). Другие – с площадью поверхности. Третьи – с соотношением этих двух величин или другими факторами. Точно так же, как скорость растворения куска сахара зависит от площади его поверхности, у животного скорость теплоотдачи или испарения воды через кожу пропорциональна площади поверхности его тела. Однако скорость теплопродукции, судя по всему, сильнее зависит от числа клеток, которое, в свою очередь, является функцией от объема.
Землеройка размером со слона сохранила бы веретенообразные ножки, которые быстро подломились бы. Ее мышцы были бы слишком тонкими, ведь сила мышцы пропорциональна не ее объему, а площади поперечного сечения. Мышечное движение – суммарное движение миллионов крошечных волокон. Число волокон, которые можно “упаковать” в мышцу, зависит от площади ее поперечного сечения (линейный размер в квадрате). Но работа, которую должна выполнять мышца – например поддержка слона, – пропорциональна массе слона (линейный размер в кубе). Поэтому слону для поддержания тела необходимо пропорционально больше мышечных волокон, чем землеройке. Соответственно, поперечное сечение мышц слона должно быть большим, чем можно ожидать при простом увеличении масштаба. То же касается объема мышц. По разным причинам это правило относится и к костям. Именно поэтому у слонов и других крупных животных ноги толстые, как стволы деревьев.