Конечно, эти модели неправдоподобны. Случайная диффузия предполагает, что люди от исходной точки расходятся во всех направлениях. В реальности их пути определяются дорогами – узкими ручейками генов, прорезающими островные леса и луга. Случайная модель спаривания еще менее реалистична. Но не беда. Мы создаем идеальные модели. Результат может показаться удивительным. И тогда мы должны решить, что кажется нам более удивительным: реальный мир или результат моделирования.

Джозеф Чан, следуя давней традиции специалистов по математической генетике, остановился на случайном спаривании: в своей модели он не учитывал размер популяции, приняв его за константу. Чан не рассматривал Тасманию, но для простоты расчетов допустим, что постоянная численность популяции составляла 5 тыс. человек (это одна из оценок аборигенного населения Тасмании 1800 года, накануне резни). Повторюсь, такие упрощения крайне важны для математического моделирования: это не недостаток метода, а наоборот, в некоторых отношениях его достоинство. Понятно, что Чан верит в случайное спаривание людей не больше, чем Евклид верил в то, что у прямых нет толщины. Посмотрим, куда нас приведут эти допущения, и решим, стоит ли обращать внимание на отличия модели от реального мира.

На сколько поколений назад нам нужно отойти, чтобы встретить человека, который был предком всех ныне живущих людей? Вот ответ, рассчитанный с помощью абстрактной модели: логарифм (с основанием 2) численности населения. Логарифм числа по основанию 2 – это то, сколько раз нужно умножить 2 на само себя, чтобы получить это число. Чтобы получить 5000, нужно умножить 2 на 2 примерно 12,3 раза. Значит, в нашем примере с Тасманией мы должны вернуться на 12,3 поколения, чтобы найти сопредка. Допустим, за столетие сменяется четыре поколения. Тогда продолжительность жизни 12,3 поколения составит 400 лет. Или еще меньше – если детьми обзаводятся родители, не достигшие 25 лет.

Назовем момент жизни последнего общего предка данной популяции точкой “Чан-один”. Продолжая двигаться в прошлое от “Чан-один”, мы вскоре окажемся в точке “Чан-два”, в которой каждый человек либо наш общий предок, либо вообще не оставил потомков. И лишь в коротком отрезке между точками “Чан-один” и “Чан-два” будет существовать промежуточная категория людей, которые имеют некоторое количество выживших потомков, но при этом не являются нашими общими предками. Отсюда следует: подавляющее большинство людей в точке “Чан-два” – наши общие предки: около 80 % людей в любой линии теоретически являются предками всех, кто будет жить в далеком будущем.

Что до датировок, то математики дают следующий ответ: “Чан-два” приблизительно в 1,77 раза старше “Чан-один”. Число 1,77, умноженное на 12,3, дает чуть меньше 22 поколений, то есть 500–600 лет. Значит, отправляясь в прошлое Тасмании, мы окажемся в области “все или ничего” во времена Джеффри Чосера. Если же мы переместимся в эпоху, когда Тасмания была соединена с Австралией, то все, кто нам повстречается, будут либо предками всей популяции, либо не оставят потомков.

Как недавно это было! Более того, вывод не слишком изменится, если рассмотреть крупную популяцию. Если в качестве модельной популяции взять популяцию с населением, равным по численности населению современной Великобритании (60 млн человек), нужно вернуться в прошлое всего на 23 поколения, чтобы достичь точки “Чан-один” и встретить самого позднего из наших общих предков. Если применить эту модель к Великобритании, от точки “Чан-два”, когда каждый человек является предком либо всех современных британцев, либо ни одного, нас будет отделять около 40 поколений. Это соответствует приблизительно 1000 году. Если бы эта модель отвечала реальности (это, конечно, не так), то англосаксонский король Альфред Великий был бы предком либо всех современных британцев, либо ни одного из них.