Или же вы можете призвать на помощь интуицию и рассудить так: «Монти знает ответ и дает мне подсказку; будет глупо ею не воспользоваться». Почему же математики, университетские профессора и другие важные персоны так опростоволосились?

Конечно, некоторым критическое мышление отказывало из-за сексизма, личных предрассудков и профессиональной ревности. Вос Савант – привлекательная, элегантная женщина, не отмеченная академическими регалиями, автор колонки в бульварном журнале, где публикуются сплетни и кулинарные рецепты; ее вовсю высмеивают в вечерних ток-шоу[44]. Она не соответствует стереотипу математика; к тому же, прославившись благодаря Книге рекордов Гиннесса, вос Савант сделалась соблазнительной мишенью для нападок.

Но часть проблемы – сама проблема. Как и в вопросах с подвохом в тесте когнитивной рефлексии и в задаче выбора Уэйсона, в парадоксе Монти Холла есть что-то, выставляющее напоказ бестолковость нашей системы 1. Но и система 2 здесь тоже не блещет. Многие не в силах усвоить ответ даже после объяснения; в их числе сам Эрдёш, который, поправ идеалы математической науки, позволил себя убедить только после многократной симуляции игры[45]. Многие упирались, даже воочию пронаблюдав за симуляцией, и даже после того, как неоднократно сыграли на деньги. В чем же причина такого резкого расхождения между нашей интуицией и законами случайности?

Разгадка кроется в самонадеянных объяснениях, которыми всезнайки оправдывали свою ошибку, – зачастую это просто решения, бездумно перенесенные с других задач по теории вероятности. Одни настаивают, что каждой из неизвестных альтернатив (в данном случае закрытых дверей) нужно приписать равную вероятность. Это верно, если речь идет о симметричном инвентаре для азартных игр вроде монет или игральных костей, и это разумная отправная точка для рассуждений, если вам абсолютно ничего не известно об альтернативах. Но это отнюдь не закон природы.

Другие представляют себе цепочку причин и следствий. Козы и автомобиль заняли свои места до того, как ведущий открыл дверь, и то, что он ее открыл, не меняет их местоположения. Указание на отсутствие причинно-следственных связей – хороший способ развенчать другие заблуждения, такие как «ошибка игрока», поддавшись которой игроки в рулетку почему-то думают, что после того, как несколько раз подряд выпало «красное», в следующем раунде должно выпасть «черное», хотя на самом деле рулетка ничего не помнит и результат одного ее вращения никак не зависит от другого. Один из корреспондентов вос Савант снисходительно объяснял:

Представьте себе забег, в котором участвуют три лошади с равными шансами на выигрыш. Если лошадь № 3 упадет в пятидесяти метрах от старта, шансы каждой из двух оставшихся лошадей составляют уже не один к трем, но один к двум.

Ясно же, заключает он, нет никакого смысла переключаться с лошади № 1 на лошадь № 2. Но это работает не так. Представьте, что после того, как вы сделали ставку на лошадь № 1, Господь возвестил с небес: «Лошадь № 3 не победит». Он мог бы предупредить насчет лошади № 2, но он этого не сделал. Теперь решение поменять ставку не кажется таким уж безумным[46]. В игре «Давайте заключим сделку» в роли бога выступает Монти Холл.

Подобный богу ведущий напоминает нам, насколько сама по себе необычна ситуация парадокса Монти Холла. Для того, чтобы она возникла, требуется всеведущее существо, которое пренебрегает обычной целью коммуникации – сообщать слушателю необходимую ему информацию (в данном случае за какой дверью машина) – и вместо этого стремится подогреть интерес третьих лиц