Ниже таблица предоставляет краткое описание сценариев использования и почему интеграция Matplotlib с NumPy и Pandas может быть удобной в каждом из них.




4. Поддержка различных форматов вывода:

Графики, созданные с помощью Matplotlib, могут быть сохранены в различных форматах файлов, таких как PNG, PDF, SVG и других. Это полезно для встраивания в отчеты, презентации и публикации.

Давайте рассмотрим пример создания графика с Matplotlib и сохранения его в различных форматах файлов.

В этом примере:

– Мы создаем данные и строим линейный график с использованием Matplotlib.

– Настраиваем внешний вид графика, добавляем подписи и заголовок.

– Сохраняем график в форматах PNG, PDF и SVG с помощью `plt.savefig()`.

После выполнения этого кода, у вас появятся три файла (`sinus_plot.png`, `sinus_plot.pdf`, `sinus_plot.svg`), представляющие график в различных форматах. Это удобно для встраивания в отчеты, презентации или публикацию в различных медиа.

5. Интерактивность:

В Matplotlib предусмотрены средства для создания интерактивных графиков, позволяющих взаимодействовать с данными. Это особенно полезно при работе с Jupyter Notebooks.

Давайте рассмотрим пример создания интерактивного графика с использованием Matplotlib в среде Jupyter Notebook. Для этого мы будем использовать функцию `plotly` для добавления интерактивности.

```python

import matplotlib.pyplot as plt

import numpy as np

import plotly.graph_objects as go

from IPython.display import display, HTML

# Создаем данные для примера

x = np.linspace(0, 2 * np.pi, 100)

y = np.sin(x)

# Строим линейный график с Matplotlib

plt.plot(x, y, label='Синус')

plt.xlabel('X-ось')

plt.ylabel('Y-ось')

plt.title('Интерактивный график синуса')

plt.legend()

# Преобразуем Matplotlib график в интерактивный с использованием Plotly

fig = go.Figure()

fig.add_trace(go.Scatter(x=x, y=y, mode='lines', name='Синус'))

# Настраиваем макет

fig.update_layout(

title='Интерактивный график синуса',

xaxis=dict(title='X-ось'),

yaxis=dict(title='Y-ось'),

)

# Отображаем интерактивный график внутри ячейки Jupyter Notebook

display(HTML(fig.to_html()))

```

В этом примере:

– Мы создаем данные и строим линейный график с Matplotlib.

– Затем мы используем Plotly, чтобы преобразовать этот график в интерактивный. Обратите внимание, что для этого требуется установка библиотеки Plotly (`pip install plotly`).

– Используется `display(HTML(fig.to_html()))`, чтобы отобразить интерактивный график внутри ячейки Jupyter Notebook.

Таким образом, вы можете взаимодействовать с данными, изменять масштаб, выделять области и другие действия прямо внутри Jupyter Notebook, что делает визуализацию данных более удобной и информативной.

6. Встроенные цветовые карты:

Matplotlib предоставляет широкий выбор цветовых карт для лучшего представления данных. От дискретных цветовых карт до плавных переходов, библиотека предоставляет разнообразные опции.

Давайте рассмотрим пример использования различных цветовых карт в Matplotlib. В этом примере мы создадим тепловую карту, используя различные цветовые карты для лучшего представления данных.

```python

import matplotlib.pyplot as plt

import numpy as np

# Создаем данные для тепловой карты

data = np.random.random((10, 10))

# Список цветовых карт для использования

colormaps = ['viridis', 'plasma', 'magma', 'inferno', 'cividis']

# Создаем подграфики для каждой цветовой карты

fig, axes = plt.subplots(1, len(colormaps), figsize=(15, 3))

# Строим тепловую карту для каждой цветовой карты

for i, cmap in enumerate(colormaps):

im = axes[i].imshow(data, cmap=cmap)