Кроме этого, нужно быть внимательным и помнить, что среднее ничего не говорит о размахе значений. Средняя годовая температура в Долине Смерти в Калифорнии равна 25 °C, что считается комфортным. Но размах может быть просто убийственным, с колебанием температуры от – 9 до 57 °C, – факт, зафиксированный приборами[21].
Или… Я мог бы вам сказать, что в среднем благосостояние сотни людей, находящихся в комнате, составляет колоссальную сумму: 350 миллионов долларов. Вы, наверное, думаете: вот бы отправить туда моих лучших менеджеров по продажам. Но в комнате могут находиться Марк Цукерберг (его состояние оценивается в 25 миллиардов долларов[22]) и 99 бедняков. Таким образом, средний показатель может размыть разницу в важных показателях.
Если вы работаете со средними, остерегайтесь еще бимодального распределения. Вспомните, мода – это то значение, которое встречается чаще всего. Во многих наборах данных – биологических, физических, социальных – у распределения может быть два или больше пиков. А это значит, что два или больше показателей встречаются чаще других.
Например, подобный график может отображать сумму, потраченную на обеды в неделю (ось X), и количество людей, потративших такую сумму (ось Y)[23]. Представьте, что вы изучали две группы людей: детей (левый горб) – они покупают школьные обеды – и руководителей компаний (правый горб) – они ходят в дорогие рестораны. Среднее арифметическое и медиана в данном случае – это числа где-то между этими двумя горбами, и они ничего не скажут нам о том, что происходит на самом деле, – ведь во многих случаях среднее арифметическое и медиана отражают ту сумму, которую никто не тратит. Подобный график говорит лишь о том, что в вашем примере имеет место неоднородность – вы сравниваете яблоки с апельсинами. В таком случае лучше сразу сказать, что вы имеете дело с бимодальным распределением, и сообщить о двух модах. А еще лучше разделить группу на две подгруппы и собрать статистические данные для каждой.
Будьте осторожны, когда будете делать выводы об отдельных людях и о группах, основываясь на средних данных. Тут можно легко наткнуться на определенные подводные камни, которые даже получили собственные названия: «экологическая ошибка» и «ошибка исключения». Экологическая ошибка возникает, если мы делаем выводы об отдельном элементе, основываясь на совокупных данных (таких как средняя величина группы), а ошибка исключения – если делать все ровно наоборот.
Представьте себе, например, два маленьких городка, в каждом из которых живет всего по сотне человек. Девяносто девять жителей города А зарабатывают по 80 тысяч долларов в год, а на земле одной женщины было найдено месторождение нефти, и теперь она одна получает 5 миллионов долларов в год. В городе Б живут 50 человек, которые зарабатывают по 100 тысяч долларов в год, а также 50 человек, которые получают по 140 тысяч долларов. Средний арифметический доход в городе А составляет 129 тысяч долларов, а в городе Б – 120 тысяч долларов. И хотя средняя величина доходов города А больше, в 99 случаях из 100 доход любого жителя города Б, которого вы выберете наугад, будет выше дохода любого случайно выбранного жителя города А. Экологическую ошибку совершают те, кто считает, что если выбрать наугад человека из группы с более высоким средним доходом, то следует ожидать, что и у него доход будет выше. Самое замечательное в этом примере то, что в городе А выше среднее арифметическое, а мода выше в городе B (так бывает не всегда).