во-вторых, применимость данной логики к одному кругу объектов еще не означает применимости ее к другому, более широкому кругу. Например, логика, применимая к конечным объектам, может оказаться неприменимой к объектам бесконечным. Так, средневековые ученые считали парадоксом тот факт, что множество всех натуральных чисел равномощно своей собственной части – множеству всех четных (или нечетных) чисел. Их ошибка проистекала оттого, что свойства конечных объектов они пытались распространить на бесконечные объекты;

в-третъих, существует целый ряд понятий, которые, не будучи четко определены, могут приводить к противоречиям при их использовании в рамках обычной человеческой логики. Например, понятие всемогущества Божия, неверно понимаемого как неограниченная способность совершать любые действия, приводит к парадоксам, типа известного вопроса о том, может ли Бог сотворить камень, который не сможет поднять? (В действительности, Его всемогущество является лишь одним из проявлений Его любви и премудрости. Поэтому Бог не может совершить зла, сотворить другого бога, перестать быть Богом и т. п.).

Поэтому, чтобы гарантировать истинность доказанного суждения, необходимо четкое определение употребляемых понятий, применимость употребляемой логики к данному кругу объектов, выяснение непротиворечивости данной системы. Но последнее является особенно трудной задачей даже для формальной арифметики.

Как доказал Гёдель, утверждение о непротиворечивости формальной системы в рамках самой системы недоказуемо. Великий немецкий математик Гильберт († 1943) сокрушался по этому поводу: «…Подумайте: в математике, этом образце достоверности и истинности, образование понятий и ход умозаключений… приводят к нелепостям. Где же искать надежность и истинность, если даже само математическое мышление дает осечку»[66].

Современное «развитие теории познания показало, что никакая форма умозаключений не может дать абсолютно достоверного знания»[67].

3. Об относительности эмпирических доказательств

Эмпирические доказательства, в конечном счете, апеллируют к опыту, т. е. к тому, что непосредственно или опосредованно (через прибор, например, или веру авторитету) познано людьми. Именно опыт, а не теоретические соображения, сколько бы правдоподобными они ни казались, является наиболее надежным критерием истинности. В журнале «Знание – сила» были как-то[68] помещены заметки, в которых остроумно «доказывалось», что жирафа – это миф, поскольку, говорилось там, животное, обладающее столь длинной шеей, не имело бы никаких шансов выжить в процессе длительной эволюции и в борьбе за существование. Интересными примерами значения опыта в решении различных вопросов являются знаменитые апории Зенона (V в. до н. э.), остроумно «доказывающие», например, отсутствие движения в мире, но так и не поколебавшие ни в ком уверенности в существовании движения.

Что же явилось причиной столь скептического отношения к выводам, казалось бы, бесспорных логических доказательств? Опыт. В истинность этих доказательств никто не верил, ибо «окончательное доказательство истинности выдвинутых положений дает… лишь их практическая проверка»[69].

Конечно, не любой опыт может быть достаточным аргументом. Малой убедительностью обладает единичный опыт. Не всегда легко доказать достоверность самого факта или правильность проведения эксперимента и учета всех факторов, определяющих его результаты. Наконец, как в опыте естественном, так и в опыте искусственном (эксперименте) результаты часто можно различно истолковать.