. Возьмем для примера Португалию12. Логическая модель умеренно переоценивает число партий и умеренно недооценивает размер большей доли мест и продолжительность жизни правительства.

До этого я добрался десять лет назад в «Предсказаниях размера партий» [Taagepera, 2007]. На основании количества мест в собрании и округах можно предсказать, как места распределятся между партиями. Но что мы знаем о голосах? Этот вопрос по-прежнему не поддавался, однако теперь мы добрались и до него.

В книге «Голоса ради мест. Логические модели избирательных систем» [Shugart, Taagepera, 2017] предсказываются мировые средние распределения голосов, на национальном уровне и по округам – исключительно на основании числа мест в каждой отдельной ассамблее и округах. Разброс данных ощутим, но фактический паттерн мирового среднего невероятно близок к логической модели. Эти мировые средние обеспечивают исходные ориентиры для страновых исследований. Мы добавляем все новые связи и связываем их в постоянно расширяющийся спектр.

Наука шагает на двух ногах, а социальные науки пытаются скакать на одной

Если судить поверхностно, я преуспел в своей мечте усиления научности социальных исследований, раз получил премию Карла Дойча. Однако я должен признаться, что потерпел неудачу. По существу, мне не удалось превратить политологию в науку. Во всяком случае, политология, равно как и другие социальные науки, сегодня менее научна, чем полвека назад, когда Кохен и Дойч [Kochen, Deutsch, 1969] опубликовали свою модель децентрализации. Это произошло, поскольку бессмысленная обработка статистических данных вытеснила логическое моделирование, как, например, у тех же Кохена и Дойча. Политология от своей полной «не-научности» переходит все больше к «псевдонаучности».

Забудьте о бессмысленном противостоянии качественного и количественного подходов к изучению политики. Они оба незаменимы, и оба дополняют друг друга. Оба могут применяться хорошо или плохо. Моя озабоченность касается того неверного пути, по которому идут сегодня количественные подходы. Они создают сумбур в области политологии. Мало того что они так пышно процветают, так еще и некоторые журналы навязывают их, в том числе даже тем ученым, которые знают, как самостоятельно провести исследование намного лучше.

Приведу лишь один пример. Некоторое время назад мне попалось прекрасное исследование, расширяющее наше понимание политики и без использования большого количества цифр. По ходу чтения оно резко сошло на нет, подавленное приведением бесполезных статистических данных. Выведенная регрессия ничего нового не добавляла. Напротив, она размыла первоначальный замысел – хорошо, что не убила окончательно. Контраст был настолько очевидным, что я связался с автором. Я высказал предположение, что журнал потребовал добавить регрессию в качестве условия для публикации. Автор на это ответил: «Да, Вы абсолютно правы». Не правда ли, звучит очень привычно? Коли люди, делающие разумную качественную работу, вынуждены добавлять бессмысленные статистические методы, то что‐то здесь не так.

Вот еще один пример. Выдающийся математический психолог Дункан Люче рассказывал мне, как он добивался публикации своей статьи [Folk, Luce, 1987]. Суть дела прекрасно выражала логарифмическая модель. Журнал настаивал на замене ее простой регрессионной моделью, что не имело логического смысла. В качестве компромисса авторам позволили оставить тот подход, который действительно имел смысл, но при условии добавления бессмысленной модели [Taagepera, 2008, p. 4]. Если людей, проводящих логически обоснованное